RESUMO
Corneal neovascularization (CNV) is associated with different ocular pathologies, including infectious keratitis, trachoma or corneal trauma. Pharmacological treatments based on the topical application of anti-VEGF therapies have been shown to be effective in the treatment and prevention of CNV. The aim of this work was to evaluate the effect of bevacizumab-loaded albumin nanoparticles in a rat model of CNV. Bevacizumab-loaded nanoparticles, either "naked" (B-NP) or coated with PEG 35,000 (B-NP-PEG), were administered once a day in the eyes of animals (10⯵L, 4â¯mg/mL every 24â¯h) during 7 days. Bevacizumab and dexamethasone were employed as controls and administered at the same dose every 12â¯h. At the end of the study, the area of the eye affected by neovascularization was about 2-times lower for animals treated with B-NP than with free bevacizumab. In the study, dexamethasone did not demonstrate an inhibitory effect on CNV at the employed dose. All of these results were confirmed by histopathological analysis, which clearly showed that eyes treated with nanoparticles displayed lower levels of fibrosis, inflammation and edema. In summary, the encapsulation of bevacizumab in human serum albumin nanoparticles improved its efficacy in an animal model of CNV.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neovascularização da Córnea/tratamento farmacológico , Modelos Animais de Doenças , Portadores de Fármacos/química , Nanopartículas/química , Albumina Sérica Humana/química , Animais , Materiais Revestidos Biocompatíveis , Neovascularização da Córnea/patologia , Masculino , Polietilenoglicóis , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidoresRESUMO
Resveratrol is a naturally occurring polyphenol that provides several health benefits including cardioprotection and cancer prevention. However, its biological activity is limited by a poor bioavailability when taken orally. The aim of this work was to evaluate the capability of casein nanoparticles as oral carriers for resveratrol. Nanoparticles were prepared by a coacervation process, purified and dried by spray-drying. The mean size of nanoparticles was around 200 nm with a resveratrol payload close to 30 µg/mg nanoparticle. In vitro studies demonstrated that the resveratrol release from casein nanoparticles was not affected by the pH conditions and followed a zero-order kinetic. When nanoparticles were administered orally to rats, they remained within the gut, displaying an important capability to reach the intestinal epithelium. No evidence of nanoparticle "translocation" were observed. The resveratrol plasma levels were high and sustained for at least 8 h with a similar profile to that observed for the presence of the major metabolite in plasma. The oral bioavailability of resveratrol when loaded in casein nanoparticles was calculated to be 26.5%, 10 times higher than when the polyphenol was administered as oral solution. Finally, a good correlation between in vitro and in vivo data was observed.
Assuntos
Anticarcinógenos/administração & dosagem , Cardiotônicos/administração & dosagem , Caseínas/química , Portadores de Fármacos/química , Nanopartículas/química , Resveratrol/administração & dosagem , Administração Oral , Animais , Anticarcinógenos/farmacocinética , Disponibilidade Biológica , Cardiotônicos/farmacocinética , Masculino , Nanopartículas/ultraestrutura , Ratos Wistar , Resveratrol/farmacocinéticaRESUMO
Zein nanoparticles were evaluated as nanocarriers to promote the oral bioavailability of quercetin and, thus, improve its anti-inflammatory effect on a mouse model of induced endotoxemia. For this purpose, the flavonoid and 2-hydroxypropyl-ß-cyclodextrin were encapsulated in zein nanoparticles. The resulting nanoparticles displayed a mean size of about 300nm and the payload was calculated to be close to 70µg/mg nanoparticle. The release of quercetin from zein nanoparticles followed a zero-order kinetic. After oral administration, nanoparticles provided high and sustained levels of quercetin in plasma and the relative oral bioavailability was calculated to be approx. 60%. Animals treated with quercetin-loaded nanoparticles (1 dose every two days; 1week) presented endotoxic symptoms less severe than those observed in animals treated with the oral solution of the flavonoid (1 dose every day; 1week). This was further corroborated by the significantly low circulating TNF-alpha in the quercetin-loaded nanoparticles treated mice.
Assuntos
Anti-Inflamatórios/administração & dosagem , Portadores de Fármacos/química , Endotoxemia/tratamento farmacológico , Nanopartículas/química , Quercetina/administração & dosagem , Zeína/química , Administração Oral , Animais , Camundongos , Camundongos Endogâmicos C57BL , Quercetina/farmacocinética , Ratos Wistar , Fator de Necrose Tumoral alfa/sangueRESUMO
Disulfiram (DS), an anti-alcoholism drug, shows very strong cytotoxicity in many cancer types. However its clinical application in cancer treatment is limited by the very short half-life in the bloodstream. In this study, we developed a poly lactic-co-glycolic acid (PLGA)-encapsulated DS protecting DS from the degradation in the bloodstream. The newly developed DS-PLGA was characterized. The DS-PLGA has very satisfactory encapsulation efficiency, drug-loading content and controlled release rate in vitro. PLGA encapsulation extended the half-life of DS from shorter than 2minutes to 7hours in serum. In combination with copper, DS-PLGA significantly inhibited the liver cancer stem cell population. CI-isobologram showed a remarkable synergistic cytotoxicity between DS-PLGA and 5-FU or sorafenib. It also demonstrated very promising anticancer efficacy and antimetastatic effect in liver cancer mouse model. Both DS and PLGA are FDA approved products for clinical application. Our study may lead to repositioning of DS into liver cancer treatment.
Assuntos
Inibidores de Acetaldeído Desidrogenases/administração & dosagem , Dissulfiram/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas , Animais , Portadores de Fármacos , Glicóis , Humanos , Ácido Láctico , Ácido PoliglicólicoRESUMO
PURPOSE: The objective of this work was to evaluate the effect in the immune response produced by CpG oligodeoxynucleotides (ODN) co-encapsulated with the antigen ovalbumin (OVA) within poly(lactic-co-glycolic) acid (PLGA) 502 and 752 microparticles (MP). METHODS: MP were prepared by blending 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) with PLGA and Total Recirculation One Machine System (TROMS) technology and contained OVA along with CpG sequences associated to DOTAP. After confirming the integrity of both encapsulated molecules, BALB/c mice were immunized with the resulting MP and OVA-specific antibodies and cytokine production were assessed in order to determine the immunological profile induced in mice. RESULTS: One ïm near non-charged MP co-encapsulated very efficiently both OVA and CpG ODN. The release of both OVA and CpG was slow and incomplete irrespective of polymer. The results of the immune response induced in BALB/c mice indicated that, depending on the PLGA polymer used, co-encapsulation did not improve the immunogenicity of the antigen, compared either with the simply co-administration of both antigen and CpG, or with the microencapsulated antigen. Thus, mice immunized with OVA associated to PLGA 756 displayed an IgG2a characterized response which was biased to an IgG1 profile in case of CpG co-encapsulation. On the contrary, the co-encapsulation of CpG with OVA into PLGA 502 significantly improved the isotype shifting in comparison with the one showed by mice immunized with OVA loaded PLGA 502. CONCLUSION: This study underlines the importance of MP characteristics to fully exploit simultaneous antigen and CpG ODN particulate delivery as effective vaccine construct.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Assuntos
Ácido Láctico/química , Oligodesoxirribonucleotídeos/imunologia , Ovalbumina/imunologia , Ácido Poliglicólico/química , Vacinas/imunologia , Animais , Formação de Anticorpos/imunologia , Antígenos/imunologia , Feminino , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microesferas , Oligodesoxirribonucleotídeos/química , Ovalbumina/química , Copolímero de Ácido Poliláctico e Ácido PoliglicólicoRESUMO
Macrophages play a pivotal role as host cells for Leishmania parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, Leishmania employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype. This review explores the intricate interplay between macrophages, Leishmania, and iron. We focus the attention on the potential of iron oxide nanoparticles (IONPs) as a sort of immunotherapy to treat some leishmaniasis forms by reprogramming Leishmania-permissive M2 macrophages into antimicrobial M1 macrophages. Through the specific targeting of iron in macrophages, the use of IONPs emerges as a promising strategy to finely tune the parasite-host interaction, endowing macrophages with an augmented antimicrobial arsenal capable of efficiently eliminating these intrusive microbes.
Assuntos
Leishmania , Leishmaniose , Ativação de Macrófagos , Macrófagos , Nanopartículas Magnéticas de Óxido de Ferro , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Leishmaniose/imunologia , Leishmaniose/tratamento farmacológico , Animais , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Leishmania/imunologia , Leishmania/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologiaRESUMO
The oral administration of therapeutic proteins copes with important challenges (mainly degradation and poor absorption) making their potential therapeutic application extremely difficult. The aim of this study was to design and evaluate the potential of the combination between mucus-permeating nanoparticles and permeation enhancers as a carrier for the oral delivery of the monoclonal antibody bevacizumab, used as a model of therapeutic protein. For this purpose, bevacizumab was encapsulated in PEG-coated albumin nanoparticles as a hydrophobic ion-pairing complex with either sodium deoxycholate (DS) or sodium docusate (DOCU). In both cases, complex formation efficiencies close to 90% were found. The incorporation of either DS or DOCU in PEG-coated nanoparticles significantly increased their mean size, particularly when DOCU was used. Moreover, the diffusion in mucus of DOCU-loaded nanoparticles was significantly reduced, compared with DS ones. In a C. elegans model, DS or DOCU (free or nanoencapsulated) disrupted the intestinal epithelial integrity, but the overall survival of the worms was not affected. In rats, the relative oral bioavailability of bevacizumab incorporated in PEG-coated nanoparticles as a complex with DS (B-DS-NP-P) was 3.7%, a 1000-fold increase compared to free bevacizumab encapsulated in nanoparticles (B-NP-P). This important effect of DS may be explained not only by its capability to transiently disrupt tight junctions but also to their ability to increase the fluidity of membranes and to inhibit cytosolic and brush border enzymes. In summary, the current strategy may be useful to allow the therapeutic use of orally administered proteins, including monoclonal antibodies.
Assuntos
Portadores de Fármacos , Nanopartículas , Ratos , Animais , Bevacizumab , Portadores de Fármacos/química , Caenorhabditis elegans , Nanopartículas/química , Albuminas , Muco/metabolismo , Administração Oral , Sistemas de Liberação de MedicamentosRESUMO
Bevacizumab is a monoclonal antibody (mAb) that prevents the growth of new blood vessels and is currently employed in the treatment of colorectal cancer (CRC). However, like other mAb, bevacizumab shows a limited penetration in the tumors, hampering their effectiveness and inducing adverse reactions. The aim of this work was to design and evaluate albumin-based nanoparticles, coated with dextran, as carriers for bevacizumab in order to promote its accumulation in the tumor and, thus, improve its antiangiogenic activity. These nanoparticles (B-NP-DEX50) displayed a mean size of about 250 nm and a payload of about 110 µg/mg. In a CRC mice model, these nanoparticles significantly reduced tumor growth and increased tumor doubling time, tumor necrosis and apoptosis more effectively than free bevacizumab. At the end of study, bevacizumab plasma levels were higher in the free drug group, while tumor levels were higher in the B-NP-DEX50 group (2.5-time higher). In line with this, the biodistribution study revealed that nanoparticles accumulated in the tumor core, potentially improving therapeutic efficacy while reducing systemic exposure. In summary, B-NP-DEX can be an adequate alternative to improve the therapeutic efficiency of biologically active molecules, offering a more specific biodistribution to the site of action.
RESUMO
Empty zein nanoparticles (NP) have been shown to lower glycemia in rats by stimulating the secretion of endogenous GLP-1. This study evaluated the effect of these nanoparticles on the lifespan of two animal models: C. elegans fed with a glucose-rich diet and the senescence accelerated mouse-prone 8 (SAMP8 mice). In C. elegans, NP increased the mean lifespan of worms by 7 days (from 17.1 for control to 24.5 days). This observation was in line with the observed significant reductions of glucose and fat contents, lipofuscin accumulation, and ROS expression. Furthermore, NP supplementation led to an upregulation of the expression of daf-16 and skn-1 genes. DAF-16 (orthologue of the FOXO family) and SKN-1 (orthologue of mammalian Nrf/CNC proteins) are implicated in activating detoxification mechanisms against oxidative damage. In SAMP8, oral administration of NP also extended the mean lifespan of mice (by 28 % compared to controls), corroborating the protective effect of these nanoparticles.
RESUMO
3D Printing is an innovative technology within the pharma and food industries that allows the design and manufacturing of novel delivery systems. Orally safe delivery of probiotics to the gastrointestinal tract faces several challenges regarding bacterial viability, in addition to comply with commercial and regulatory standpoints. Lactobacillus rhamnosus CNCM I-4036 (Lr) was microencapsulated in generally recognised as safe (GRAS) proteins, and then assessed for robocasting 3D printing. Microparticles (MP-Lr) were developed and characterised, prior to being 3D printed with pharmaceutical excipients. MP-Lr showed a size of 12.3 ± 4.1 µm and a non-uniform wrinkled surface determined by Scanning Electron Microscopy (SEM). Bacterial quantification by plate counting accounted for 8.68 ± 0.6 CFU/g of live bacteria encapsulated within. Formulations were able to keep the bacterial dose constant upon contact with gastric and intestinal pH. Printlets consisted in oval-shape formulations (15 mm × 8 mm × 3.2 mm) of ca. 370 mg of total weight, with a uniform surface. After the 3D printing process, bacterial viability remained even as MP-Lr protected bacteria alongside the process (log reduction of 0.52, p > 0.05) in comparison with non-encapsulated probiotic (log reduction of 3.05). Moreover, microparticle size was not altered during the 3D printing process. We confirmed the success of this technology for developing an orally safe formulation, GRAS category, of microencapsulated Lr for gastrointestinal vehiculation.
Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Trato Gastrointestinal , Intestinos/microbiologia , Viabilidade Microbiana , Impressão TridimensionalRESUMO
This study aims to provide a thorough characterization of Brij O2-stabilized gliadin nanoparticles to be used for the potential oral administration of various compounds. Different techniques were used in order to evaluate their physico-chemical features and then in vivo studies in rats were performed for the investigation of their biodistribution and gastrointestinal transit profiles. The results showed that the gliadin nanoparticles accumulated in the mucus layer of the bowel mucosa and evidenced their ability to move along the digestive systems of the animals. The incubation of the nanosystems with Caenorhabditis elegans, used as an additional in vivo model, confirmed the intake of the particles and evidenced their presence along the entire gastrointestinal tract of these nematodes. The gliadin nanoparticles influenced neither the egg-laying activity of the worms nor their metabolism of lipids up to 10 µg/mL of nanoformulation. The systems decreased the content of the age-related lipofuscin pigment in the nematodes in a dose-dependent manner, demonstrating a certain antioxidant activity. Lastly, dihydroethidium staining showed the absence of oxidative stress upon incubation of the worms together with the formulations, confirming their safe profile. This data paves the way for the future application of the proposed nanosystems regarding the oral delivery of various bioactives.
Assuntos
Gliadina , Nanopartículas , Ratos , Animais , Gliadina/química , Distribuição Tecidual , Nanopartículas/química , Administração Oral , Trato Gastrointestinal/metabolismoRESUMO
In this study, the ability of zein nanospheres (NS) and zein nanocapsules containing wheat germ oil (NC) to enhance the bioavailability and efficacy of quercetin was evaluated. Both types of nanocarriers had similar physico-chemical properties, including size (between 230 and 250 nm), spherical shape, negative zeta potential, and surface hydrophobicity. However, NS displayed a higher ability than NC to interact with the intestinal epithelium, as evidenced by an oral biodistribution study in rats. Moreover, both types of nanocarriers offered similar loading efficiencies and release profiles in simulated fluids. In C. elegans, the encapsulation of quercetin in nanospheres (Q-NS) was found to be two twice more effective than the free form of quercetin in reducing lipid accumulation. For nanocapsules, the presence of wheat germ oil significantly increased the storage of lipids in C. elegans; although the incorporation of quercetin (Q-NC) significantly counteracted the presence of the oil. Finally, nanoparticles improved the oral absorption of quercetin in Wistar rats, offering a relative oral bioavailability of 26% and 57% for Q-NS and Q-NC, respectively, compared to a 5% for the control formulation. Overall, the study suggests that zein nanocarriers, particularly nanospheres, could be useful in improving the bioavailability and efficacy of quercetin.
Assuntos
Nanocápsulas , Nanopartículas , Nanosferas , Zeína , Ratos , Animais , Nanocápsulas/química , Quercetina/química , Nanosferas/química , Zeína/química , Distribuição Tecidual , Caenorhabditis elegans/metabolismo , Ratos Wistar , Nanopartículas/química , Tamanho da PartículaRESUMO
PURPOSE: To evaluate the acute and subacute toxicity of poly(anhydride) nanoparticles as carriers for oral drug/antigen delivery. METHODS: Three types of poly(anhydride) nanoparticles were assayed: conventional (NP), nanoparticles containing 2-hydroxypropyl-ß-cyclodextrin (NP-HPCD) and nanoparticles coated with poly(ethylene glycol) 6000 (PEG-NP). Nanoparticles were prepared by a desolvation method and characterized in terms of size, zeta potential and morphology. For in vivo oral studies, acute and sub-acute toxicity studies were performed in rats in accordance to the OECD 425 and 407 guidelines respectively. Finally, biodistribution studies were carried out after radiolabelling nanoparticles with (99m)technetium. RESULTS: Nanoparticle formulations displayed a homogeneous size of about 180 nm and a negative zeta potential. The LD(50) for all the nanoparticles tested was established to be higher than 2000 mg/kg bw. In the sub-chronic oral toxicity studies at two different doses (30 and 300 mg/kg bw), no evident signs of toxicity were found. Lastly, biodistribution studies demonstrated that these carriers remained in the gut with no evidences of particle translocation or distribution to other organs. CONCLUSIONS: Poly(anhydride) nanoparticles (either conventional or modified with HPCD or PEG6000) showed no toxic effects, indicating that these carriers might be a safe strategy for oral delivery of therapeutics.
Assuntos
Anidridos/toxicidade , Portadores de Fármacos , Nanopartículas , Administração Oral , Anidridos/farmacocinética , Animais , Feminino , Masculino , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Ratos , Ratos Wistar , Distribuição TecidualRESUMO
The aim was to evaluate the effect of zein-based nanoparticles on the glucose homeostasis, following oral administration to Wistar rats. For this purpose, bare nanoparticles (NP, with tropism for the upper intestinal regions) and poly(ethylene glycol)-coated nanoparticles (NP-PEG), with the capability to reach the ileum and cecum of animals, were evaluated. Both formulations were spherical in shape, displaying sizes around 200 nm and a negative surface zeta potential. The oral administration of a single dose of these nanoparticles to animals (50 mg/kg) induced a significant decrease of the glycemia, compared control rats and in animals treated with the free protein (p < 0.001). Moreover, these nanoparticles improved the glycemic control against an intraperitoneal glucose tolerance test; particularly NP-PEG. These findings would be due to an increased release of glucagon-like peptide-1 (GLP-1) by l-cells, which are more abundant in distal regions of the intestine. In fact, the GLP-1 blood levels of animals treated with nanoparticles were significantly higher than controls (about 40 % and 60 % for NP and NP-PEG groups, respectively). This higher capability of NP-PEG, with respect to NP, to increase the release of GLP-1 and control glycemia would be related to its ability to reach the distal areas of the small intestine.
Assuntos
Nanopartículas , Zeína , Ratos , Animais , Ratos Wistar , Peptídeo 1 Semelhante ao Glucagon , Glicemia , Administração Oral , InsulinaRESUMO
Enterotoxigenic Escherichia coli (ETEC) infections have been identified as a major cause of acute diarrhoea in children in developing countries, associated with substantial morbidity and mortality rates. Additionally, ETEC remains the most common cause of acute diarrhea of international travellers to endemic areas. The heat-labile toxin (LT) is a major virulence factor of ETEC, with a significant correlation between the presence of antibodies against LT and protection in infected patients. In the present work, we constructed a recombinant LTB unit (rLTB) and studied the capacity of this toxoid incorporated in microneedles (rLTB-MN) to induce a specific immune response in mice. MN were prepared from aqueous blends of the polymer Gantrez AN® [poly (methyl vinyl ether-co-maleic anhydride)], which is not cytotoxic and has been shown to possess immunoadjuvant properties. The mechanical and dissolution properties of rLTB-MNs were evaluated in an in vitro Parafilm M® model and in mice and pig skin ex vivo models. The needle insertion ranged between 378 µm and 504 µm in Parafilm layers, and MNs fully dissolved within 15 min of application inside porcine skin. Moreover, female and male BALB/c mice were immunized through ear skin with one single dose of 5 µg·rLTB in MNs, eliciting significant fecal anti-LT IgA antibodies, higher in female than in male mice. Moreover, we observed an enhanced production of IL-17A by spleen cells in the immunized female mice, indicating a mucosal non-inflammatory and neutralizing mediated response. Further experiments will now be required to validate the protective capacity of this new rLTB-MN formulation against this deadly non-vaccine-preventable disease.
RESUMO
The aim was to study the ability of bioadhesive cyclodextrin-poly(anhydride) nanoparticles as carriers for the oral delivery of atovaquone (ATO). In order to increase the loading capacity of ATO by poly(anhydride) nanoparticles, the following oligosaccharides were assayed: 2-hydroxypropyl-ß-cyclodextrin (HPCD), 2,6-di-O-methyl-ß-cyclodextrin (DCMD), randomly methylated-ß-cyclodextrin (RMCD) and sulfobuthyl ether-ß-cyclodextrin (SBECD). Nanoparticles were obtained by desolvation after the incubation between the poly(anhydride) with the ATO-cyclodextrin complexes. For the pharmacokinetic studies, ATO formulations were administered orally in rats. Overall, ATO displayed a higher affinity for methylated cyclodextrins than for the other derivatives. However, for in vivo studies, both ATO-DMCD-NP and ATO-HPCD-NP were chosen. These nanoparticle formulations showed more adequate physicochemical properties in terms of size (<260 nm), drug loading (17.8 and 16.9 µg/mg, respectively) and yield (>75%). In vivo, nanoparticle formulations induced higher and more prolonged plasmatic levels of atovaquone than control suspensions of the drug in methylcellulose. Relative bioavailability of ATO when loaded in nanoparticles ranged from 52% (for ATO-HPCD NP) to 71% (for ATO-DMCD NP), whereas for the suspension control formulation the bioavailability was only about 30%. The encapsulation of atovaquone in cyclodextrins-poly(anhydride) nanoparticles seems to be an interesting strategy to improve the oral bioavailability of this lipophilic drug.
Assuntos
Atovaquona/farmacologia , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Polianidridos/farmacocinética , beta-Ciclodextrinas/farmacocinética , 2-Hidroxipropil-beta-Ciclodextrina , Administração Oral , Animais , Disponibilidade Biológica , Fenômenos Químicos , Portadores de Fármacos/química , Desenho de Fármacos , Masculino , Nanopartículas/química , Ratos , Ratos Wistar , beta-Ciclodextrinas/administração & dosagemRESUMO
Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solubility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-ß-CD or methoxy-PEG (m-PEG) to the polymer backbone of Gantrez™ AN, were synthetized and characterized. Both excipients (m-PEG and HPCD) were selected due to their reported abilities to stabilize the lactone ring of CPT and disturb the effect of intestinal P-gp. The resulting nanoparticles (G-mPEG-NP and G-HPCD-NP) presented a similar size (about 200 nm) and zeta potential (close to -35 mV); although, G-mPEG-NP presented a higher CPT payload than G-HPCD-NP. On the contrary, in rats, nanoparticles based on Gantrez conjugates appeared to be capable of crossing the protective mucus layer and reach the intestinal epithelium, whereas conventional Gantrez nanoparticles displayed a mucoadhesive profile. Finally, the pharmacokinetic study revealed that both formulations were able to enhance the relative oral bioavailability of CPT; although this value was found to be 2.6-times higher for G-mPEG-NP than for G-HPCD-NP.
RESUMO
A simple procedure for obtaining outer membrane vesicles from Salmonella enterica and the use of hydrogels as vaccine delivery system is described. A heat treatment in saline solution of whole bacteria rendered the release of outer membrane vesicles containing relevant antigenic components. The immunogenicity of these antigens when administered by the intranasal route may be improved after embedment into hydrogels to increase residence half-time and thus activate the mucosal immune system.
Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Hidrogéis/química , Vacinas/química , Vacinas/imunologia , Administração Intranasal/métodos , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Imunidade nas Mucosas/imunologia , Imunogenicidade da Vacina/imunologia , Salmonella enterica/imunologiaRESUMO
The aim was to evaluate the potential of nanocarriers, based on the coating of zein nanoparticles (ZNP) with a Gantrez® AN-PEG conjugate (GP), for the oral delivery of insulin. ZNP-GP displayed less negative surface charge and a 14-fold higher diffusion coefficient in pig intestinal mucus than ZNP. Both nanoparticles showed a spherical shape and an insulin load of 77.5 µg/mg. Under simulated gastric conditions, ZNP-GP released significantly lower amount of insulin than ZNP, while under simulated intestinal conditions, both types of nanoparticles displayed similar behaviour. In Caenorhabditis elegans wild-type N2, grown under high glucose conditions, insulin treatments reduced glucose and fat accumulation without altering the growth rate, the worm length, or the pumping rate. The effect was significantly greater (p < 0.001) when insulin was nanoencapsulated in ZNP-GP compared with that encapsulated in ZNP or formulated in solution. This would be related to the highest capability of ZNP-GP to diffuse in the dense peritrophic-like layer covering intestinal cells in worms. In daf-2 mutants, the effect on fat and glucose reduction by insulin treatment was suppressed, indicating a DAF-2 dependent mechanism. In summary, ZNP-GP is a promising platform that may offer new opportunities for the oral delivery of insulin and other therapeutic proteins.
Assuntos
Nanopartículas , Zeína , Animais , Caenorhabditis elegans , Portadores de Fármacos , Insulina , SuínosRESUMO
The aim was to evaluate the potential of mucus-permeating nanoparticles for the oral administration of insulin. These nanocarriers, based on the coating of zein nanoparticles with a polymer conjugate containing PEG, displayed a size of 260 nm with a negative surface charge and an insulin payload of 77 µg/mg. In intestinal pig mucus, the diffusivity of these nanoparticles (PPA-NPs) was found to be 20-fold higher than bare nanoparticles (NPs). These results were in line with the biodistribution study in rats, in which NPs remained trapped in the mucus, whereas PPA-NPs were able to cross this layer and reach the epithelium surface. The therapeutic efficacy was evaluated in Caenorhabditis elegans grown under high glucose conditions. In this model, worms treated with insulin-loaded in PPA-NPs displayed a longer lifespan than those treated with insulin free or nanoencapsulated in NPs. This finding was associated with a significant reduction in the formation of reactive oxygen species (ROS) as well as an important decrease in the glucose and fat content in worms. These effects would be related with the mucus-permeating ability of PPA-NPs that would facilitate the passage through the intestinal peritrophic-like dense layer of worms (similar to mucus) and, thus, the absorption of insulin.