Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Clin Oncol ; 29(4): 386-397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381163

RESUMO

BACKGROUND: Patients with cancer, particularly those undergoing chemotherapy, are at risk from the low immunogenicity of Coronavirus Disease 19 (COVID-19) vaccines. METHODS: This prospective study assessed the seroconversion rate of COVID-19 vaccines among patients with cancer and hospital staff. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific IgG (S-IgG) concentrations were evaluated before the first vaccination, and 1-3 and 4-6 months after the second vaccination. The primary endpoint was the seroconversion rate measured 1-3 months after the second vaccine. RESULTS: In total, 590 patients and 183 healthy hospital staff were analyzed. At 1-3 months after the second vaccination, the S-IgG antibody concentration exceeded the cut-off value (20 BAU/mL) in 96.1% (567/590) of the patients with cancer and 100% (183/183) of the healthy controls (p = 0.0024). At 4-6 months after the second vaccination, the S-IgG antibody concentration exceeded the cut-off value (20 BAU/ml for S-IgG) in 93.1% (461/495) of the patients with cancer and 100% (170/170) of the healthy controls (p < 0.0001). Old age, being male, and low lymphocyte count were related to low SARS-CoV-2 S-IgG levels 1-3 months after the second vaccination among patients, while body mass index, smoking history, and serum albumin level were not. Patients undergoing platinum combination therapy and alkylating agent among cytotoxic drugs, and PARP inhibitor, mTOR inhibitor, and BCR-ABL inhibitor exhibited a low S-IgG antibody concentration compared to the no treatment group. CONCLUSIONS: COVID-19 vaccine immunogenicity was reduced among patients with cancer, especially under several treatment regimens.


Assuntos
COVID-19 , Neoplasias , Feminino , Humanos , Masculino , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Imunoglobulina G , Neoplasias/tratamento farmacológico , Estudos Prospectivos , SARS-CoV-2 , Vacinação , Idoso
2.
Am J Physiol Heart Circ Physiol ; 322(5): H749-H761, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275762

RESUMO

Alterations in cardiac metabolism are strongly associated with the pathogenesis of heart failure (HF). We recently reported that glutamine-dependent anaplerosis, termed glutaminolysis, was activated by H2O2 stimulation in rat cardiomyocytes, which seemed to be an adaptive response by which cardiomyocytes survive acute stress. However, the molecular mechanisms and fundamental roles of glutaminolysis in the pathophysiology of the failing heart are still unknown. Here, we treated wild-type mice (C57BL/6J) and rat neonatal cardiomyocytes (RNCMs) and fibroblasts (RNCFs) with angiotensin II (ANG II) to induce pathological cardiac remodeling. Glutaminase 1 (GLS1), a rate-limiting glutaminolysis enzyme, was significantly increased in ANG II-induced mouse hearts, RNCMs and RNCFs. Unexpectedly, a GLS1 inhibitor attenuated ANG II-induced left ventricular hypertrophy and fibrosis in the mice, and gene knockdown and pharmacological perturbation of GLS1 suppressed hypertrophy and the proliferation of RNCMs and RNCFs, respectively. Using mass spectrometry (MS)-based stable isotope tracing with 13C-labeled glutamine, we observed glutamine metabolic flux in ANG II-treated RNCMs and RNCFs. The incorporation of 13C atoms into tricarboxylic acid (TCA) cycle intermediates and their derivatives was markedly enhanced in both cell types, indicating the activation of glutaminolysis in hypertrophied hearts. Notably, GLS1 inhibition reduced the production of glutamine-derived aspartate and citrate, which are required for the biosynthesis of nucleic acids and lipids, possibly contributing to the suppression of cardiac hypertrophy and fibrosis. The findings of the present study reveal that GLS1-mediated upregulation of glutaminolysis leads to maladaptive cardiac remodeling. Inhibition of this anaplerotic pathway could be a novel therapeutic approach for HF.NEW & NOTEWORTHY To our knowledge, this study is the first to demonstrate that increased GLS1 expression and subsequent activation of glutaminolysis are associated with exacerbation of cardiac hypertrophy and fibrosis. Inhibiting GLS1 antagonized the adverse cardiac remodeling in vitro and in vivo, partly due to reduction of glutamine-derived metabolites, which are necessary for cellular growth and proliferation. Increased glutamine utilization for anabolic reactions in cardiac cells may be related to the pathogenesis and development of HF.


Assuntos
Glutaminase , Remodelação Ventricular , Animais , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Peróxido de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Ratos
3.
Biochem Biophys Res Commun ; 576: 22-26, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34478915

RESUMO

Blood based ß-amyloid (Aß) assays that can predict amyloid positivity in the brain are in high demand. Current studies that utilize immunoprecipitation mass spectrometry assay (IP-MS), which has high specificity for measuring analytes, have revealed that precise plasma Aß assays have the potential to detect amyloid positivity in the brain. In this study, we developed plasma Aß40 and Aß42 immunoassays using a fully automated immunoassay platform that is used in routine clinical practice. Our assays showed high sensitivity (limit of quantification: 2.46 pg/mL [Aß40] and 0.16 pg/mL [Aß42]) and high reproducibility within-run (coefficients of variation [CVs]: <3.7% [Aß40] and <2.0% [Aß42]) and within-laboratory (CVs: <4.6% [Aß40] and <5.3% [Aß42]). The interference from plasma components was less than 10%, and the cross-reactivity with various lengths of Aß peptides was less than 0.5%. In addition, we found a significant correlation between the IP-MS method and our immunoassay (correlation coefficients of Pearson's r: 0.91 [Aß40] and 0.82 [Aß42]). Our new method to quantify plasma Aß40 and Aß42 provides clinicians and patients with a way to continuously monitor disease progression.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Técnicas Imunoenzimáticas/métodos , Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/sangue , Plasma/metabolismo , Doença de Alzheimer/sangue , Biomarcadores/sangue , Humanos , Luminescência , Reprodutibilidade dos Testes
4.
Biochem Biophys Res Commun ; 534: 687-693, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213841

RESUMO

BACKGROUND: Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear. OBJECTIVE: To investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium. METHODS AND RESULTS: The intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H2O2 stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H2O2. These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H2O2 stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels. CONCLUSION: Our study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF.


Assuntos
Glutamina/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , Ciclo do Ácido Cítrico , Metabolismo Energético , Ácido Glutâmico/metabolismo , Glutaminase/metabolismo , Insuficiência Cardíaca/metabolismo , Ácidos Cetoglutáricos/metabolismo , Redes e Vias Metabólicas , Miócitos Cardíacos/citologia , Estresse Oxidativo , Ratos
5.
BMC Neurosci ; 22(1): 9, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557752

RESUMO

BACKGROUND: We previously reported that heat shock protein 27 (HSP27) phosphorylation plays an important role in the activation of glucose-6-phosphate dehydrogenase (G6PD), resulting in the upregulation of the pentose phosphate pathway and antioxidant effects against cerebral ischemia-reperfusion injury. The present study investigated the effect of geranylgeranylacetone, an inducer of HSP27, on ischemia-reperfusion injury in male rats as a preliminary study to see if further research of the effects of geranylgeranylacetone on the ischemic stroke was warranted. METHODS: In all experiments, male Wistar rats were used. First, we conducted pathway activity profiling based on a gas chromatography-mass spectrometry to identify ischemia-reperfusion-related metabolic pathways. Next, we investigated the effects of geranylgeranylacetone on the pentose phosphate pathway and ischemia-reperfusion injury by real-time polymerase chain reaction (RT-PCR), immunoblotting, and G6PD activity, protein carbonylation and infarct volume analysis. Geranylgeranylacetone or vehicle was injected intracerebroventricularly 3 h prior to middle cerebral artery occlusion or sham operation. RESULTS: Pathway activity profiling demonstrated that changes in the metabolic state depended on reperfusion time and that the pentose phosphate pathway and taurine-hypotaurine metabolism pathway were the most strongly related to reperfusion among 137 metabolic pathways. RT-PCR demonstrated that geranylgeranylacetone did not significantly affect the increase in HSP27 transcript levels after ischemia-reperfusion. Immunoblotting showed that geranylgeranylacetone did not significantly affect the elevation of HSP27 protein levels. However, geranylgeranylacetone significantly increase the elevation of phosphorylation of HSP27 after ischemia-reperfusion. In addition, geranylgeranylacetone significantly affected the increase in G6PD activity, and reduced the increase in protein carbonylation after ischemia-reperfusion. Accordingly, geranylgeranylacetone significantly reduced the infarct size (median 31.3% vs 19.9%, p = 0.0013). CONCLUSIONS: As a preliminary study, these findings suggest that geranylgeranylacetone may be a promising agent for the treatment of ischemic stroke and would be worthy of further study. Further studies are required to clearly delineate the mechanism of geranylgeranylacetone-induced HSP27 phosphorylation in antioxidant effects, which may guide the development of new approaches for minimizing the impact of cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica/patologia , Diterpenos/farmacologia , Proteínas de Choque Térmico HSP27/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/patologia , Animais , Isquemia Encefálica/metabolismo , Proteínas de Choque Térmico HSP27/efeitos dos fármacos , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo
6.
Circ J ; 83(5): 1032-1038, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30867359

RESUMO

BACKGROUND: Trans-fatty acid (TFA) intake increases the risk of coronary artery disease (CAD). Our previous cross-sectional survey showed that middle-aged patients with CAD in Japan have elevated serum TFA. In this study, we longitudinally investigated whether elevated TFA is a risk factor in the secondary prevention of CAD for the same-age patients. Methods and Results: A total of 112 patients (age, 21-66 years) who underwent percutaneous coronary intervention were followed up for up to 2 years. Serum elaidic acid was measured using gas chromatography/mass spectrometry as a marker of TFA intake and divided into quartiles. The primary endpoint was ischemia-driven target lesion revascularization (TLR). The hazard ratio (HR) for TLR increased significantly with higher serum elaidic acid (P<0.01). The significant positive trend remained unchanged after adjusting for conventional lipid profile and bare-metal stent usage. In contrast, although triglycerides and low-density lipoprotein cholesterol were positively correlated with elaidic acid, they were not associated with TLR. On multivariable Cox proportional hazard analysis, elevated elaidic acid was independently associated with TLR risk after adjusting for conventional coronary risks (HR, 10.7, P<0.01). CONCLUSIONS: Elevated elaidic acid is associated with higher TLR rate in middle-aged patients with CAD, suggesting that excessive TFA intake is becoming a serious health problem in Japan.


Assuntos
Ácidos Oleicos/sangue , Intervenção Coronária Percutânea , Sistema de Registros , Stents , Adulto , Fatores Etários , Idoso , LDL-Colesterol/sangue , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ácidos Graxos trans/efeitos adversos , Triglicerídeos/sangue
7.
Biochem Biophys Res Commun ; 495(1): 761-767, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146184

RESUMO

Cancer cells rapidly consume glutamine as a carbon and nitrogen source to support proliferation, but the cell number continues to increase exponentially after glutamine is nearly depleted from the medium. In contrast, cell proliferation rates are strongly depressed when cells are cultured in glutamine-free medium. How cancer cells survive in response to nutrient limitation and cellular stress remains poorly understood. In addition, rapid glutamine catabolism yields ammonia, which is a potentially toxic metabolite that is secreted into the extracellular space. Here, we show that ammonia can be utilized for glutamate production, leading to cell proliferation under glutamine-depleted conditions. This proliferation requires glutamate dehydrogenase 2, which synthesizes glutamate from ammonia and α-ketoglutarate and is expressed in MCF7 and T47D cells. Our findings provide insight into how cancer cells survive under glutamine deprivation conditions and thus contribute to elucidating the mechanisms of tumor growth.


Assuntos
Amônia/metabolismo , Proliferação de Células , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/biossíntese , Glutamina/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ativação Enzimática , Humanos , Células MCF-7 , Redes e Vias Metabólicas
8.
Arterioscler Thromb Vasc Biol ; 37(9): 1667-1673, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28705794

RESUMO

OBJECTIVE: Recent genome-wide association studies newly identified the human KIAA1462 gene as a new locus for coronary artery disease. However, the function of the gene product, named JCAD (junctional protein associated with coronary artery disease), is unknown. Because JCAD is expressed at cell-cell junctions in endothelial cells, we hypothesized and tested whether JCAD regulates angiogenic processes in vitro and in vivo. APPROACH AND RESULTS: Cell culture experiments revealed impaired angiogenic ability (proliferation, migration, and cord formation) by the knockdown of JCAD with siRNA (P<0.05 versus control siRNA). We have generated mice lacking JCAD (mKIAA1462-/-) by gene-targeted deletion of JCAD to address in vivo angiogenic function. mKIAA1462-/- mice did not show morphological differences in development of retinal vasculature. Ex vivo aortic ring model demonstrated impaired neovascularization in aorta from mKIAA1462-/- mice than control wild-type mice (P<0.05). Tumor growth was assessed by monitoring tumor volume after the subcutaneous injection of melanoma, LLC (Lewis lung carcinoma), and E0771 cells into the mice. mKIAA1462-/- mice exhibited significantly smaller tumor volume compared with wild-type mice (P<0.001). Histological assessment of the tumor exhibited less smooth muscle actin-positive neovascularization determined by CD31-positive vascular structure in tumor of mKIAA1462-/- mice than wild-type mice, indicating that knockdown of JCAD inhibited the vascular maturation in pathological angiogenic process. CONCLUSIONS: These in vitro and in vivo studies suggest that JCAD has a redundant functional role in physiological angiogenesis but serves a pivotal role in pathological angiogenic process after birth.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Neovascularização Patológica , Neovascularização Fisiológica , Neovascularização Retiniana , Animais , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Genótipo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Técnicas de Cultura de Tecidos , Transfecção , Carga Tumoral
9.
Circ J ; 82(2): 596-601, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28652532

RESUMO

BACKGROUND: It has previously been reported that oral administration of purified eicosapentaenoic acid (EPA) generates EPA-rich high-density lipoprotein (HDL) particles with a variety of anti-inflammatory properties. In this study, the mechanism underlying the anti-atherogenic effects of EPA-rich HDL using reconstituted HDL (rHDL) was investigated.Methods and Results:rHDL was generated by the sodium cholate dialysis method, using apolipoprotein A-1 protein, cholesterol, and various concentrations of EPA-phosphatidylcholine (PC) or egg-PC. Increased EPA-PC contents in rHDL resulted in decreased particle size. Next, the effects of rHDL containing various amounts (0-100% of total PC) of EPA-PC on vascular cell adhesion molecule-1 (VCAM-1) expression in human umbilical vein endothelial cells (HUVECs) was examined. Cytokine-stimulated VCAM-1 expression was inhibited in a dose-dependent manner based on the amount of EPA-PC in rHDL. Surprisingly, the incubation of HUVECs with EPA-rich rHDL resulted in the production of resolvin E3 (RvE3), an anti-inflammatory metabolite derived from EPA. Incubation with EPA-PC alone did not adequately induce RvE3 production, suggesting that RvE3 production requires an endothelial cell-HDL interaction. The increased anti-inflammatory effects of EPA-rich HDL may be explained by EPA itself and RvE3 production. Furthermore, the increase in EPA-PC content enhanced cholesterol efflux. CONCLUSIONS: The EPA-enriched HDL particles exhibit cardioprotective properties via the production of anti-inflammatory lipid metabolites and the increase in cholesterol efflux.


Assuntos
Aterosclerose/tratamento farmacológico , Ácido Eicosapentaenoico/farmacologia , Lipoproteínas HDL/farmacologia , Células Cultivadas , Colesterol/metabolismo , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Insaturados/biossíntese , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Circ J ; 83(1): 182-192, 2018 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-30487369

RESUMO

BACKGROUND: Gut microbiome composition or circulating microbiome-related metabolites in patients with heart failure (HF) have not been investigated at different time points (i.e., in the decompensated (Decomp) and compensated (Comp) phases). Methods and Results: We prospectively enrolled 22 patients admitted for HF and 11 age-, sex-, and comorbidity-matched hospitalized control subjects without a history of HF. Gut flora and plasma microbiome-related metabolites were evaluated by amplicon sequencing of the bacterial 16S ribosomal RNA gene and capillary electrophoresis time-of-flight mass spectrometry, respectively. HF patients were evaluated in both the Decomp and Comp phases during hospitalization. The phylum Actinobacteria was enriched in HF patients compared with control subjects. At the genus level, Bifiodobacterium was abundant while Megamonas was depleted in HF patients. Meanwhile, plasma concentration of trimethylamine N-oxide (TMAO), a gut microbiome-derived metabolite, was increased in HF patients (Decomp HF vs. control, P=0.003; Comp HF vs. control, P=0.004). A correlation analysis revealed positive correlations between the abundance of the genus Escherichia/Shigella and levels of TMAO and indoxyl sulfate (IS, a microbe-dependent uremic toxin) in Comp HF (TMAO: r=0.62, P=0.002; IS: r=0.63, P=0.002). Escherichia/Shigella was more abundant in Decomp than in Comp HF (P=0.030). CONCLUSIONS: Our results suggest that gut microbiome composition and microbiome-related metabolites are altered in HF patients.


Assuntos
Bifidobacterium , Escherichia coli , Microbioma Gastrointestinal , Insuficiência Cardíaca , Shigella , Idoso , Idoso de 80 Anos ou mais , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/microbiologia , Insuficiência Cardíaca/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Shigella/classificação , Shigella/isolamento & purificação
11.
J Biol Chem ; 291(10): 4913-27, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26728457

RESUMO

Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-ß1 (TGF-ß1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-ß1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fígado/metabolismo , Insuficiência Renal Crônica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Ligação a DNA/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Insuficiência Renal Crônica/patologia , Ácido Retinoico 4 Hidroxilase , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/metabolismo , Vitamina A/sangue
12.
Biochem Biophys Res Commun ; 475(4): 322-8, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216458

RESUMO

Recent studies have shown that the ketone body ß-hydroxybutyrate (ßOHB) acts not only as a carrier of energy but also as a signaling molecule that has a role in diverse cellular functions. Circulating levels of ketone bodies have been previously reported to be increased in patients with congestive heart failure (HF). In this study, we investigated regulatory mechanism and pathophysiological role of ßOHB in HF. First, we revealed that ßOHB level was elevated in failing hearts, but not in blood, using pressure-overloaded mice. We also measured cellular ßOHB levels in both cardiomyocytes and non-cardiomyocytes stimulated with or without H2O2 and revealed that increased myocardial ßOHB was derived from cardiomyocytes but not non-cardiomyocytes under pathological states. Next, we sought to elucidate the mechanisms of myocardial ßOHB elevation and its implication under pathological states. The gene and protein expression levels of CoA transferase (SCOT), a key enzyme involved in ketone body oxidation, was decreased in failing hearts. In cardiomyocytes, H2O2 stimulation caused ßOHB accumulation concomitantly with SCOT downregulation, implying that the accumulation of myocardial ßOHB occurs because of the decline in its utilization. Finally, we checked the effects of ßOHB on cardiomyocytes under oxidative stress. We found that ßOHB induced FOXO3a, an oxidative stress resistance gene, and its target enzyme, SOD2 and catalase. Consequently, ßOHB attenuated reactive oxygen species production and alleviated apoptosis induced by oxidative stress. It has been reported that hyperadrenergic state in HF boost lipolysis and result in elevation of circulating free fatty acids, which can lead hepatic ketogenesis for energy metabolism alteration. The present findings suggest that the accumulation of ßOHB also occurs as a compensatory response against oxidative stress in failing hearts.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Ácido 3-Hidroxibutírico/análise , Animais , Células Cultivadas , Coenzima A-Transferases/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Ratos
13.
Circ J ; 79(9): 2017-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26166015

RESUMO

BACKGROUND: Adverse effects of dietary intake of trans-fatty acids (TFA) on the incidence of coronary artery disease (CAD) are well recognized in Western countries. The risk of TFA, however, has not been well clarified in Japan. We investigated the association of serum TFA concentration with serum lipid profile, coronary risk factors, and prevalence of CAD. METHODS AND RESULTS: A total of 902 patients, who were hospitalized at Kobe University Hospital from July 2008 to March 2012 and gave written informed consent, were enrolled in this study. Among them, 463 patients had CAD, and 318 patients had metabolic syndrome (MetS). Serum TFA, elaidic acid (trans-9-C18:1) and linolelaidic acid (trans-9, 12-C18:2), were measured on gas chromatography/mass spectrometry. Serum TFA level had a positive correlation with body mass index, waist circumference, low-density lipoprotein cholesterol, triglycerides, and apolipoprotein B48, and an inverse correlation with age and high-density lipoprotein cholesterol. Fasting serum TFA, by age quartile in the young generation with CAD and/or MetS, was higher than that in patients without CAD and/or MetS. On multivariate logistic regression, TFA was identified as a CAD risk after adjustment for classical risk factors. CONCLUSIONS: Serum TFA concentration was elevated in young patients with CAD and/or MetS. Diet-derived TFA may cause a serious health problem, particularly in the young generation in Japan.


Assuntos
Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/induzido quimicamente , Doença da Artéria Coronariana/epidemiologia , Gorduras na Dieta/efeitos adversos , Ácidos Graxos trans/sangue , Fatores Etários , Idoso , HDL-Colesterol/sangue , Feminino , Humanos , Incidência , Japão/epidemiologia , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Ácido Oleico/sangue , Ácidos Oleicos , Prevalência
14.
Cancer Treat Res Commun ; 40: 100830, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964205

RESUMO

BACKGROUND: NY-ESO-1 and XAGE1 cancer/testis antigens elicit humoral and cellular immune responses in NSCLC patients. We aimed to predict clinical benefit with ICI monotherapy, using an automated immunoassay of NY-ESO-1/XAGE1 antibodies (Abs). METHODS: This study enrolled 99 NSCLC patients who received nivolumab after chemotherapy, including 21 patients harboring EGFR, ALK, or KRAS alterations. The cutoff value (10 units/mL) of NY-ESO-1 and XAGE1 Ab was determined based on Ab levels in non-malignant controls, and NY-ESO-1/XAGE1 Abs in NSCLC were measured before nivolumab. Differences in PFS and OS between the Ab-positive and Ab-negative groups were retrospectively analyzed using Cox regression analysis after applying inverse probability of treatment weighting (IPTW). RESULTS: NY-ESO-1/XAGE1 Abs were positive in 28 NSCLC, who responded more highly to nivolumab than the Ab-negatives (response rate 50.0% vs. 15.5 %, p < 0.0007). The IPTW-adjusted positives and negatives for NY-ESO-1/XAGE1 Abs were 24.5 and 70.2, respectively. The Ab-positives showed longer IPTW-adjusted PFS (HR = 0.59, 95 % CI: 0.39-0.90, p = 0.014) and IPTW-adjusted OS (HR = 0.51, 95 % CI: 0.32-0.81, p = 0.004) than the Ab-negatives. Among NSCLC harboring driver genes, the Ab-positives (n = 10) showed longer PFS (HR = 0.34, 95 % CI: 0.13-0.89, p = 0.029) and OS (HR = 0.27, 95 % CI: 0.098-0.75, p = 0.012) than the Ab-negatives (n = 11). CONCLUSION: Our immunoassay of NY-ESO-1/XAGE1 Abs is probably useful for predicting the clinical benefit with nivolumab in NSCLC, including those harboring driver genes. These results suggest that our immunoassay may be useful in ICI monotherapy for NSCLC.

15.
Biochem Biophys Res Commun ; 440(4): 737-42, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24120946

RESUMO

Phosphofructokinase (PFK) 1 is a glycolytic enzyme, and its abnormality contributes to the development of multiple human diseases, such as cancer. Here, we report that nucleoredoxin (NRX), a thioredoxin-related oxidoreductase, is a novel interacting partner of PFK1. NRX binds directly to PFK1, and endogenous NRX and PFK1 interact in vivo. In NRX(-/-) mouse embryonic fibroblasts (MEFs), the oligomerization status of PFK1 is altered and the catalytic activity of PFK1 is decreased. NRX deficiency augmented levels of NADPH and reduced glutathione, two major cellular antioxidants generated through the pentose phosphate pathway. Indeed, NRX(-/-) MEFs are significantly more resistant to oxidative stress than NRX(+/+) MEFs. These results reveal a novel role of NRX in the regulation of PFK1 activity and in the balance between glycolysis and the pentose phosphate pathway.


Assuntos
Glucose/metabolismo , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Fosfofrutoquinase-1/metabolismo , Animais , Catálise , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Estresse Oxidativo , Oxirredutases/genética , Testículo/metabolismo
16.
J Neurooncol ; 113(1): 65-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456655

RESUMO

Metabolomics has recently undergone rapid development; however, metabolomic analysis in cerebrospinal fluid (CSF) is not a common practice. We analyzed the metabolite profiles of preoperative CSF samples from 32 patients with histologically confirmed glioma using gas chromatography/mass spectrometry (GC/MS). We assessed how alterations in the metabolite levels were related to the World Health Organization (WHO) tumor grades, tumor location, gadolinium enhancement on magnetic resonance imaging (MRI), and the isocitrate dehydrogenase (IDH) mutation status. Sixty-one metabolites were identified in the CSF from glioma patients using targeted, quantitative and non-targeted, semi-quantitative analysis. The citric and isocitric acid levels were significantly higher in the glioblastoma (GBM) samples than in the grades I-II and grade III glioma samples. In addition, the lactic and 2-aminopimelic acid levels were relatively higher in the GBM samples than in the grades I-II glioma samples. The CSF levels of the citric, isocitric, and lactic acids were significantly higher in grade I-III gliomas with mutant IDH than in those with wild-type IDH. The tumor location and enhancement obtained using MRI did not significantly affect the metabolite profiles. Higher CSF levels of lactic acid were statistically associated with a poorer prognosis in grades III-IV malignant gliomas. Our study suggests that the metabolomic analysis of CSF from glioma patients may be useful for predicting the glioma grade, metabolic state, and prognosis of gliomas.


Assuntos
Biomarcadores Tumorais/líquido cefalorraquidiano , Neoplasias Encefálicas/líquido cefalorraquidiano , Glioma/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/patologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glioma/patologia , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Gradação de Tumores , Adulto Jovem
17.
Anticancer Res ; 43(2): 919-926, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697081

RESUMO

BACKGROUND/AIM: The severity and associated mortality of coronavirus disease 2019 (COVID-19) are higher in patients with thoracic cancer than in healthy populations and those with other cancer types. Here, we investigated real-world data on the incidence of COVID-19 and false-negative cases using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time reverse-transcription polymerase chain reaction (rRT-PCR) testing in patients with thoracic cancer. PATIENTS AND METHODS: We retrospectively reviewed patients with advanced thoracic cancer at the National Cancer Center Hospital between March 2020-May 2021. Blood samples were collected and evaluated for IgM and IgG antibodies specific for nucleocapsid (N) and spike (S) protein SARS-CoV-2 before and after rRT-PCR testing. False-negative cases were assessed based on anti-SARS-CoV-2 antibody levels before and after rRT-PCR testing. RESULTS: A total of 2,107 patients with thoracic cancer were identified between March 2020 and May 2021, 7 (0.3%) of whom developed COVID-19. Among the 218 patients who underwent at least one rRT-PCR test because of suspected COVID-19 symptoms or as a screening test at our institute, the most common diagnosis was non-COVID-19 pneumonia (34.4%), followed by tumor fever (30.7%). Furthermore, of the 218 patients, 120 paired serum samples before and after rRT-PCR testing were available. Seroconversion was identified in all three patients with positive SARS-CoV-2 rRT-PCR results but was only observed in 1 out of the 117 patients who tested negative; the rate of false-negative cases was low (0.9%). CONCLUSION: COVID-19 incidence among patients with advanced thoracic cancer was low during the early phase of the pandemic in Japan.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Pandemias , Incidência , Japão/epidemiologia , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Neoplasias/epidemiologia
18.
Adv Clin Chem ; 112: 155-204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36642483

RESUMO

Immune checkpoint inhibitors (ICI) are key drugs in systemic therapy for advanced non-small-cell lung cancer (NSCLC) and have recently been incorporated into neoadjuvant and adjuvant settings for surgical resection. Currently, ICI combinations with cytotoxic agents are frequently used in clinical practice, although several ICI clinical trials have failed to produce long-term clinical benefits. Unfortunately, clinical benefit is moderate and limited considering physical and financial burden. Therefore, selecting appropriate patients and regimens for ICI therapy is important, and biomarkers are necessary for their selection. Tumor PD-L1 expression is universally used as a biomarker; however, PD-L1 assays show low analytical validity and reproducibility due to the visual-scoring system by pathologists. Recent tumor immunology studies explore that neoantigens derived from somatic mutations and the collaboration between T and B cells efficiently elicit antitumor responses. This suggests that high tumor mutational burden and T-cell infiltration are predictive biomarkers. However, B cells producing antibody (Ab) remain poorly understood and analyzed as biomarkers. We found that NY-ESO-1 and XAGE1 of cancer-testis antigen frequently elicit spontaneous humoral and cellular immune responses in NSCLC. Serum Ab against these antigens were detected in approximately 25% of NSCLC patients and predicted ICI monotherapy responses. In addition, the Ab levels were decreased with tumor shrinkage after ICI therapy. Thus, NY-ESO-1 and XAGE1 Ab are potentially biomarkers predicting and monitoring response to ICI therapy. For clinical applications, a fully-automated assay system measuring the Ab was developed. Here, we review current ICI therapy, tumor immunology, and biomarkers in NSCLC, and discuss the applicability of the serum biomarkers NY-ESO-1 and XAGE1 Ab.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Masculino , Anticorpos , Antígenos de Neoplasias , Antígeno B7-H1 , Biomarcadores , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Reprodutibilidade dos Testes , Inibidores de Checkpoint Imunológico/uso terapêutico
19.
J Lipid Res ; 53(4): 810-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22308508

RESUMO

Phosphoinositides (PI) play important regulatory roles in cell physiology. Localization and quantitation of PIs within the cell is necessary to understand their precise function. Currently, ectopic expression of green fluorescent protein (GFP)-fused PI-binding domains is used to visualize PIs localized to the cell membrane. However, ectopically expressed PI-binding domains may compete with endogenous binding proteins, thus altering the physiological functions of the PIs. Here, we establish a novel method for quantification and visualization of PIs in cells and tissue samples using PI-binding domains labeled with quantum dots (Qdot) as specific probes. This method allowed us to simultaneously quantify three distinct PIs, phosphatidylinositol 3,4,5-triphosphatase [PtdIns(3,4,5)P(3)), PtdIns(3,4)P(2), and PtdIns(4,5)P(2), in crude acidic lipids extracted from insulin-stimulated cells. In addition, the method allowed the PIs to be visualized within fixed cells and tissues. Sequential and spatial changes in PI production and distribution were detected in platelet-derived growth factor (PDGF)-stimulated NRK49F cells. We also observed accumulation of PtdIns(3,4)P(2) at the dorsal ruffle in PDGF-stimulated NIH3T3 cells. Finally, we found PtdIns(3,4,5)P(3) was enriched in lung cancer tissues, which also showed high levels of phosphorylated Akt. Our new method to quantify and visualize PIs is expected to provide further insight into the role of lipid signaling in a wide range of cellular events.


Assuntos
Imuno-Histoquímica/métodos , Microscopia de Fluorescência/métodos , Sondas Moleculares/química , Pontos Quânticos , Ácidos/química , Animais , Células CHO , Movimento Celular , Cricetinae , Humanos , Insulina/farmacologia , Camundongos , Células NIH 3T3 , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/isolamento & purificação , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/isolamento & purificação , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Transfecção
20.
Artigo em Inglês | MEDLINE | ID: mdl-21785649

RESUMO

We investigated the inhibitory effect of three glycyrrhizin derivatives, such as Glycyrrhizin (compound 1), dipotassium glycyrrhizate (compound 2) and glycyrrhetinic acid (compound 3), on the activity of mammalian pols. Among these derivatives, compound 3 was the strongest inhibitor of mammalian pols α, ß, κ, and λ, which belong to the B, A, Y, and X families of pols, respectively, whereas compounds 1 and 2 showed moderate inhibition. Among the these derivatives tested, compound 3 displayed strongest suppression of the production of tumor necrosis factor-α (TNF-α) induced by lipopolysaccharide (LPS) in a cell-culture system using mouse macrophages RAW264.7 and peritoneal macrophages derived from mice. Moreover, compound 3 was found to inhibit the action of nuclear factor-κB (NF-κB) in engineered human embryonic kidney (HEK) 293 cells. In addition, compound 3 caused greater reduction of 12-O-tetradecanoylphorbol-13-acetate-(TPA-) induced acute inflammation in mouse ear than compounds 1 and 2. In conclusion, this study has identified compound 3, which is the aglycone of compounds 1 and 2, as a promising anti-inflammatory candidate based on mammalian pol inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA