Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172565

RESUMO

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos Virais
2.
Trends Immunol ; 45(3): 188-197, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38453577

RESUMO

Molecular studies in bats have led to the discovery of antiviral adaptations that may explain how some bat species have evolved enhanced immune tolerance towards viruses. Accumulating data suggest that some bat species have also evolved remarkable features of longevity and low rates of cancer. Furthermore, recent research strongly suggests that discovering immune adaptations in bat models can be translated to develop immune modulators and recognize alternate therapeutic strategies for diseases affecting humans. We posit that research in bat immunology will lead to discoveries that can potentially be translated to improve health outcomes in humans.


Assuntos
Quirópteros , Vírus , Animais , Humanos
3.
Nature ; 589(7842): 363-370, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33473223

RESUMO

There have been several major outbreaks of emerging viral diseases, including Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)-as well as the current pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks have been linked to suspected zoonotic transmission of bat-borne viruses. Bats-the only flying mammal-display several additional features that are unique among mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and an exceptional ability to host viruses without presenting clinical disease. Here we discuss the mechanisms that underpin the host defence system and immune tolerance of bats, and their ramifications for human health and disease. Recent studies suggest that 64 million years of adaptive evolution have shaped the host defence system of bats to balance defence and tolerance, which has resulted in a unique ability to act as an ideal reservoir host for viruses. Lessons from the effective host defence of bats would help us to better understand viral evolution and to better predict, prevent and control future viral spillovers. Studying the mechanisms of immune tolerance in bats could lead to new approaches to improving human health. We strongly believe that it is time to focus on bats in research for the benefit of both bats and humankind.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Reservatórios de Doenças/veterinária , Zoonoses Virais/imunologia , Zoonoses Virais/transmissão , Animais , Doenças Assintomáticas , Reservatórios de Doenças/virologia , Evolução Molecular , Humanos , Tolerância Imunológica , Zoonoses Virais/virologia
4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544865

RESUMO

Bats are responsible for the zoonotic transmission of several major viral diseases, including those leading to the 2003 SARS outbreak and likely the ongoing COVID-19 pandemic. While comparative genomics studies have revealed characteristic adaptations of the bat innate immune system, functional genomic studies are urgently needed to provide a foundation for the molecular dissection of the viral tolerance in bats. Here we report the establishment of genome-wide RNA interference (RNAi) and CRISPR libraries for the screening of the model megabat, Pteropus alecto. We used the complementary RNAi and CRISPR libraries to interrogate P. alecto cells for infection with two different viruses: mumps virus and influenza A virus, respectively. Independent screening results converged on the endocytosis pathway and the protein secretory pathway as required for both viral infections. Additionally, we revealed a general dependence of the C1-tetrahydrofolate synthase gene, MTHFD1, for viral replication in bat cells and human cells. The MTHFD1 inhibitor, carolacton, potently blocked replication of several RNA viruses, including SARS-CoV-2. We also discovered that bats have lower expression levels of MTHFD1 than humans. Our studies provide a resource for systematic inquiry into the genetic underpinnings of bat biology and a potential target for developing broad-spectrum antiviral therapy.


Assuntos
Aminoidrolases/genética , COVID-19/genética , Formiato-Tetra-Hidrofolato Ligase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Complexos Multienzimáticos/genética , Pandemias , Aminoidrolases/antagonistas & inibidores , Animais , Antivirais/uso terapêutico , COVID-19/virologia , Linhagem Celular , Quirópteros/genética , Quirópteros/virologia , Formiato-Tetra-Hidrofolato Ligase/antagonistas & inibidores , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/antagonistas & inibidores , Antígenos de Histocompatibilidade Menor , Complexos Multienzimáticos/antagonistas & inibidores , Vírus de RNA/genética , SARS-CoV-2/patogenicidade , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
5.
J Virol ; 96(20): e0115222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173189

RESUMO

Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.


Assuntos
Quirópteros , Viroses , Vírus , Humanos , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Antivirais , Receptores Toll-Like
6.
Proc Natl Acad Sci U S A ; 117(46): 28939-28949, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33106404

RESUMO

Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1ß and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1ß activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1ß cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1ß, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration.


Assuntos
Caspase 1/metabolismo , Quirópteros/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Animais , Quirópteros/genética , Citocinas/metabolismo , DNA , Proteínas de Ligação a DNA , Células HEK293 , Humanos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Piroptose , Transdução de Sinais
7.
Immunity ; 36(5): 795-806, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22633459

RESUMO

Primary resistance to pathogens is reliant on both basal and inducible immune defenses. To date, research has focused upon inducible innate immune responses. In contrast to resistance via cytokine induction, basal defense mechanisms are less evident. Here we showed that the antiviral protein kinase R (PKR) inhibited the key actin-modifying protein gelsolin to regulate actin dynamics and control cytoskeletal cellular functions under homeostatic conditions. Through this mechanism, PKR controlled fundamental innate immune, actin-dependent processes that included membrane ruffling and particle engulfment. Accordingly, PKR counteracted viral entry into the cell. These findings identify a layer of host resistance, showing that the regulation of actin-modifying proteins during the innate immune response bolsters first-line defense against intracellular pathogens and has a sustained effect on virus production. Moreover, these data provide proof of principle for a concept in which the cell cytoskeleton could be targeted to elicit broad antiviral protection.


Assuntos
Actinas/metabolismo , Gelsolina/metabolismo , Imunidade Inata/imunologia , eIF-2 Quinase/metabolismo , Actinas/imunologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Gelsolina/antagonistas & inibidores , Gelsolina/imunologia , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/imunologia , Proteínas dos Microfilamentos/metabolismo , Domínios e Motivos de Interação entre Proteínas/imunologia , Vírus/imunologia , Vírus/metabolismo , eIF-2 Quinase/imunologia
8.
Cell Mol Life Sci ; 77(8): 1607-1622, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31352533

RESUMO

Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.


Assuntos
Quirópteros/virologia , Vírus da Dengue/fisiologia , Dengue/veterinária , Animais , Australásia/epidemiologia , Linhagem Celular , Quirópteros/imunologia , Dengue/epidemiologia , Dengue/imunologia , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Malásia/epidemiologia , Internalização do Vírus
9.
Proc Natl Acad Sci U S A ; 112(5): 1535-40, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605927

RESUMO

Inflammation is critical for host defense, but without appropriate control, it can cause chronic disease or even provoke fatal responses. Here we identify a mechanism that limits the inflammatory response. Probing the responses of macrophages to the key sensory Toll-like receptors, we identify that the Broad-complex, Tramtrack and Bric-a-brac/poxvirus and zinc finger (BTB/POZ), transcriptional regulator promyelocytic leukemia zinc finger (PLZF) limits the expression of inflammatory gene products. In accord with this finding, PLZF-deficient animals express higher levels of potent inflammatory cytokines and mount exaggerated inflammatory responses to infectious stimuli. Temporal quantitation of inflammatory gene transcripts shows increased gene induction in the absence of PLZF. Genome-wide analysis of histone modifications distinguish that PLZF establishes basal activity states of early response genes to maintain immune homeostasis and limit damaging inflammation. We show that PLZF stabilizes a corepressor complex that encompasses histone deacetylase activity to control chromatin. Together with our previous demonstration that PLZF promotes the antiviral response, these results suggest a strategy that could realize one of the major goals of immune therapy to retain immune resistance to pathogens while curbing damaging inflammation.


Assuntos
Cromatina/metabolismo , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Transdução de Sinais , Animais , Infecções Bacterianas/metabolismo , Imunoprecipitação da Cromatina , Transferência Ressonante de Energia de Fluorescência , Histona Desacetilases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína com Dedos de Zinco da Leucemia Promielocítica , Reação em Cadeia da Polimerase em Tempo Real
10.
Elife ; 132024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037770

RESUMO

Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.


Assuntos
Quirópteros , Fibroblastos , Quirópteros/metabolismo , Humanos , Fibroblastos/metabolismo , Animais , Metabolômica , Espécies Reativas de Oxigênio/metabolismo , Proteômica/métodos , Linhagem Celular , Consumo de Oxigênio , Multiômica
11.
Nucleic Acids Res ; 39(13): 5692-703, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21447562

RESUMO

Although microRNAs (miRNAs) are key regulators of gene expression, little is known of their overall persistence in the cell following processing. Characterization of such persistence is key to the full appreciation of their regulatory roles. Accordingly, we measured miRNA decay rates in mouse embryonic fibroblasts following loss of Dicer1 enzymatic activity. The results confirm the inherent stability of miRNAs, the intracellular levels of which were mostly affected by cell division. Using the decay rates of a panel of six miRNAs representative of the global trend of miRNA decay, we establish a mathematical model of miRNA turnover and determine an average miRNA half-life of 119 h (i.e. ∼5 days). In addition, we demonstrate that select miRNAs turnover more rapidly than others. This study constitutes, to our knowledge, the first in-depth characterization of miRNA decay in mammalian cells. Our findings indicate that miRNAs are up to 10× more stable than messenger RNA and support the existence of novel mechanism(s) controlling selective miRNA cellular concentration and function.


Assuntos
RNA Helicases DEAD-box/genética , MicroRNAs/metabolismo , Estabilidade de RNA , Ribonuclease III/genética , Animais , Células Cultivadas , RNA Helicases DEAD-box/metabolismo , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Processamento Pós-Transcricional do RNA , Ribonuclease III/metabolismo
12.
Front Cell Infect Microbiol ; 13: 1224532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661999

RESUMO

The interferon pathway is the first line of defense in viral infection in all mammals, and its induction stimulates broad expression of interferon-stimulated genes (ISGs). In mice and also humans, the antiviral function of ISGs has been extensively studied. As an important viral reservoir in nature, bats can coexist with a variety of pathogenic viruses without overt signs of disease, yet only limited data are available for the role of ISGs in bats. There are multiple species of bats and work has begun deciphering the differences and similarities between ISG function of human/mouse and different bat species. This review summarizes the current knowledge of conserved and bat-specific-ISGs and their known antiviral effector functions.


Assuntos
Antivirais , Quirópteros , Humanos , Animais , Camundongos , Interferons
13.
Front Immunol ; 14: 1192385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818363

RESUMO

Following viral infection, viral antigens bind specifically to receptors on the surface of lymphocytes thereby activating adaptive immunity in the host. An epitope, the smallest structural and functional unit of an antigen, binds specifically to an antibody or antigen receptor, to serve as key sites for the activation of adaptive immunity. The complexity and diverse range of epitopes are essential to study and map for the diagnosis of disease, the design of vaccines and for immunotherapy. Mapping the location of these specific epitopes has become a hot topic in immunology and immune therapy. Recently, epitope mapping techniques have evolved to become multiplexed, with the advent of high-throughput sequencing and techniques such as bacteriophage-display libraries and deep mutational scanning. Here, we briefly introduce the principles, advantages, and disadvantages of the latest epitope mapping techniques with examples for viral antigen discovery.


Assuntos
Antígenos Virais , Antígenos , Mapeamento de Epitopos/métodos , Epitopos , Técnicas de Visualização da Superfície Celular/métodos
14.
Front Public Health ; 11: 1212018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808979

RESUMO

Introduction: Bats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats' importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats. Methods: Here, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome. Results: Using VirScan, we identified past exposures to 57 viral genera-including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses-in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics. Discussion: Overall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements.


Assuntos
Quirópteros , Reservatórios de Doenças , Animais , Humanos , Ecossistema , Estudos Soroepidemiológicos , Zoonoses
15.
Nat Commun ; 14(1): 8465, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123560

RESUMO

Inflammasome activity is important for the immune response and is instrumental in numerous clinical conditions. Here we identify a mechanism that modulates the central Caspase-1 and NLR (Nod-like receptor) adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). We show that the function of ASC in assembling the inflammasome is controlled by its modification with SUMO (small ubiquitin-like modifier) and identify that the nuclear ZBTB16 (zinc-finger and BTB domain-containing protein 16) promotes this SUMOylation. The physiological significance of this activity is demonstrated through the reduction of acute inflammatory pathogenesis caused by a constitutive hyperactive inflammasome by ablating ZBTB16 in a mouse model of Muckle-Wells syndrome. Together our findings identify an further mechanism by which ZBTB16-dependent control of ASC SUMOylation assembles the inflammasome to promote this pro-inflammatory response.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Sumoilação
16.
Mol Ther ; 18(4): 785-95, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20125126

RESUMO

Short-interfering RNAs (siRNAs) have engendered much enthusiasm for their ability to silence the expression of specific genes. However, it is now well established that siRNAs, depending on their sequence, can be variably sensed by the innate immune system through recruitment of toll-like receptors 7 and 8 (TLR7/8). Here, we aimed to identify sequence-based modifications allowing for the design of bifunctional siRNAs with both proinflammatory and specific silencing activities, and with potentially increased therapeutic benefits. We found that the introduction of a micro-RNA (miRNA)-like nonpairing uridine-bulge in the passenger strand robustly increased immunostimulatory activity on human immune cells. This sequence modification had no effect on the silencing efficiency of the siRNA. Increased immunostimulation with the uridine-bulge design was specific to human cells, and conserved silencing efficiency required a Dicer-substrate scaffold. The increased cytokine production with the uridine-bulge design resulted in enhanced protection against Semliki Forest virus (SFV) infection, in viral assays. Thus, we characterize a design scaffold applicable to any given siRNA sequence, that results in increased innate immune activation without affecting gene silencing. Our data suggest that this sequence modification coupled with structural modification differentially recruits human TLR8 over TLR7, and could have potential application in antiviral therapies.


Assuntos
MicroRNAs/imunologia , RNA Interferente Pequeno/imunologia , Viroses/terapia , Animais , Humanos , Imunização , Inflamação/imunologia , Receptores de Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , MicroRNAs/química , MicroRNAs/genética , Monócitos/imunologia , RNA Interferente Pequeno/genética , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Uridina/química , Uridina/genética , Uridina/imunologia
17.
Trends Ecol Evol ; 36(3): 180-184, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33384197

RESUMO

The origin and zoonotic transmission route of SARS-CoV-2 remain speculative. We discuss scenarios for the zoonotic emergence of SARS-CoV-2, and also explore the missing evidence and ecological considerations that are necessary to confidently identify the origin and transmission route of SARS-CoV-2 and to prevent future pandemics of zoonotic viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Pandemias , Zoonoses/epidemiologia
18.
Sci Immunol ; 6(63): eabd0205, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533977

RESUMO

In humans, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is highly infective, often causes severe acute and/or long-term illness, and elicits a high rate of mortality, even in countries with sophisticated medical systems. Detailed knowledge on the immune responses underpinning COVID-19 (coronavirus disease 2019), and on strategies SARS-CoV-2 uses to evade them, can provide pivotal guidance to researchers and clinicians developing and administering potentially life-saving immunomodulatory therapies. The need for such therapies in COVID-19 is unlikely to abate soon given the emergence of variants of concern that may pose new challenges for some vaccines and neutralizing antibodies. Here, we summarize current knowledge on COVID-19 immunopathogenesis in relation to three clinical disease stages and focus on immune evasion strategies used by pathogenic coronaviruses such as skewing type I, II, and III interferon responses and inhibiting detection via pattern recognition and antigen presentation. Insights gained from bats, which exhibit minimal disease in response to SARS-CoV-2 infection, offer an informative perspective and may guide future development of new therapies. We also discuss how knowledge of immunopathology may inform therapeutic decisions, for example, on selecting the most appropriate immunotherapeutic agents and timing their administration, to reduce morbidity and mortality of COVID-19.


Assuntos
COVID-19/imunologia , Quirópteros/imunologia , Quirópteros/virologia , Fatores Imunológicos/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Humanos
19.
iScience ; 24(5): 102477, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33937724

RESUMO

Type I interferons (IFNs) are our first line of defense against virus infection. Recent studies have suggested the ability of SARS-CoV-2 proteins to inhibit IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wild-type SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are scarce. Here we demonstrate that SARS-CoV-2 infection induces a type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Furthermore, we show that physiological levels of IFNα detected in patients with moderate COVID-19 is sufficient to suppress SARS-CoV-2 replication in human airway cells.

20.
Hum Mutat ; 31(9): 1069-79, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20652908

RESUMO

Human Toll-like receptors (TLRs) TLR7, TLR8, and TLR9 are important immune sensors of foreign nucleic acids encountered by phagocytes. Although there is growing evidence implicating TLR7 and TLR9 in the detection of intracellular pathogenic bacteria, characterization of such a role for TLR8 is currently lacking. A recent genetic study has correlated the presence of a TLR8 single nucleotide polymorphism (SNP) (rs3764880:A>G; p.Met1Val) with the development of active tuberculosis, suggesting a role for TLR8 in the detection of phagosomal bacteria. Here we provide the first direct evidence that TLR8 sensing is activated in human monocytic cells following Helicobacter pylori phagocytosis. In addition, we show that rs3764880 fine tunes translation of the two TLR8 main isoforms, without affecting protein function. Although we show that TLR8 variant 2 (TLR8v2) is the prevalent form of TLR8 contributing to TLR8 function, we also uncover a role for the TLR8 long isoform (TLR8v1) in the positive regulation of TLR8 function in CD16(+)CD14(+) differentiated monocytes. Thus, TLR8 sensing can be activated following bacterial phagocytosis, and rs3764880 may play a role in the modulation of TLR8-dependent microbicidal response of infected macrophages.


Assuntos
Helicobacter pylori/fisiologia , Monócitos/citologia , Monócitos/microbiologia , Fagocitose , Receptor 8 Toll-Like/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Movimento Celular , Retroalimentação Fisiológica , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Dados de Sequência Molecular , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Biossíntese de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Receptores de IgG/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA