Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Eukaryot Microbiol ; 71(2): e13010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37941507

RESUMO

Rhabdamoeba marina is a unique and poorly reported amoeba with an uncertain phylogenetic position. We successfully cultured R. marina from coastal seawater in Japan and performed a molecular phylogenetic analysis using the small subunit ribosomal RNA (SSU rRNA) gene sequence. Our phylogenetic analysis showed that R. marina branched as a basal lineage of Chlorarachnea, a group of marine photosynthetic algae belonging to the phylum Cercozoa within the supergroup Rhizaria. By comparing the ecological and morphological characteristics of R. marina with those of photosynthetic chlorarachneans and other cercozoans, we gained insight into the evolution and acquisition of plastids in Chlorarachnida.


Assuntos
Cercozoários , Rhizaria , Filogenia , DNA Ribossômico/genética , DNA de Protozoário/genética , Cercozoários/genética
2.
J Eukaryot Microbiol ; 70(6): e12997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37606230

RESUMO

Ancyromonads are small biflagellated protists with a bean-shaped morphology. They are cosmopolitan in marine, freshwater, and soil environments, where they attach to surfaces while feeding on bacteria. These poorly known grazers stand out by their uncertain phylogenetic position in the tree of eukaryotes, forming a deep-branching "orphan" lineage that is considered key to a better understanding of the early evolution of eukaryotes. Despite their ecological and evolutionary interest, only limited knowledge exists about their true diversity. Here, we aimed to characterize ancyromonads better by integrating environmental surveys with behavioral observation and description of cell morphology, for which sample isolation and culturing are indispensable. We studied 18 ancyromonad strains, including 14 new isolates and seven new species. We described three new and genetically divergent genera: Caraotamonas, Nyramonas, and Olneymonas, together encompassing four species. The remaining three new species belong to the already-known genera Fabomonas and Ancyromonas. We also raised Striomonas, formerly a subgenus of Nutomonas, to full genus status, on morphological and phylogenetic grounds. We studied the morphology of diverse ancyromonads under light and electron microscopy and carried out molecular phylogenetic analyses, also including 18S rRNA gene sequences from several environmental surveys. Based on these analyses, we have updated the taxonomy of Ancyromonadida.


Assuntos
Eucariotos , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 18S/genética , Microscopia Eletrônica
3.
Proc Natl Acad Sci U S A ; 117(10): 5364-5375, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094181

RESUMO

Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.


Assuntos
Cercozoários/ultraestrutura , Criptófitas/ultraestrutura , Dinoflagellida/ultraestrutura , Evolução Molecular , Genomas de Plastídeos , Plastídeos/fisiologia , Simbiose , Núcleo Celular/genética , Núcleo Celular/fisiologia , Cercozoários/classificação , Cercozoários/genética , Clorófitas/classificação , Clorófitas/fisiologia , Clorófitas/ultraestrutura , Criptófitas/classificação , Criptófitas/genética , Dinoflagellida/classificação , Dinoflagellida/genética , Modelos Biológicos , Filogenia , Plastídeos/genética
4.
Proc Biol Sci ; 287(1934): 20201538, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873198

RESUMO

We here report the phylogenetic position of barthelonids, small anaerobic flagellates previously examined using light microscopy alone. Barthelona spp. were isolated from geographically distinct regions and we established five laboratory strains. Transcriptomic data generated from one Barthelona strain (PAP020) were used for large-scale, multi-gene phylogenetic (phylogenomic) analyses. Our analyses robustly placed strain PAP020 at the base of the Fornicata clade, indicating that barthelonids represent a deep-branching metamonad clade. Considering the anaerobic/microaerophilic nature of barthelonids and preliminary electron microscopy observations on strain PAP020, we suspected that barthelonids possess functionally and structurally reduced mitochondria (i.e. mitochondrion-related organelles or MROs). The metabolic pathways localized in the MRO of strain PAP020 were predicted based on its transcriptomic data and compared with those in the MROs of fornicates. We here propose that strain PAP020 is incapable of generating ATP in the MRO, as no mitochondrial/MRO enzymes involved in substrate-level phosphorylation were detected. Instead, we detected a putative cytosolic ATP-generating enzyme (acetyl-CoA synthetase), suggesting that strain PAP020 depends on ATP generated in the cytosol. We propose two separate losses of substrate-level phosphorylation from the MRO in the clade containing barthelonids and (other) fornicates.


Assuntos
Evolução Biológica , Eucariotos/fisiologia , Filogenia , Anaerobiose , Eucariotos/metabolismo , Mitocôndrias/metabolismo , Organelas/metabolismo
5.
Mol Biol Evol ; 34(9): 2355-2366, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28549159

RESUMO

Nonphotosynthetic plastids retain important biological functions and are indispensable for cell viability. However, the detailed processes underlying the loss of plastidal functions other than photosynthesis remain to be fully understood. In this study, we used transcriptomics, subcellular localization, and phylogenetic analyses to characterize the biochemical complexity of the nonphotosynthetic plastids of the apochlorotic diatom Nitzschia sp. NIES-3581. We found that these plastids have lost isopentenyl pyrophosphate biosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase-based carbon fixation but have retained various proteins for other metabolic pathways, including amino acid biosynthesis, and a portion of the Calvin-Benson cycle comprised only of glycolysis/gluconeogenesis and the reductive pentose phosphate pathway (rPPP). While most genes for plastid proteins involved in these reactions appear to be phylogenetically related to plastid-targeted proteins found in photosynthetic relatives, we also identified a gene that most likely originated from a cytosolic protein gene. Based on organellar metabolic reconstructions of Nitzschia sp. NIES-3581 and the presence/absence of plastid sugar phosphate transporters, we propose that plastid proteins for glycolysis, gluconeogenesis, and rPPP are retained even after the loss of photosynthesis because they feed indispensable substrates to the amino acid biosynthesis pathways of the plastid. Given the correlated retention of the enzymes for plastid glycolysis, gluconeogenesis, and rPPP and those for plastid amino acid biosynthesis pathways in distantly related nonphotosynthetic plastids and cyanobacteria, we suggest that this substrate-level link with plastid amino acid biosynthesis is a key constraint against loss of the plastid glycolysis/gluconeogenesis and rPPP proteins in multiple independent lineages of nonphotosynthetic algae/plants.


Assuntos
Diatomáceas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Aminoácidos/biossíntese , Evolução Biológica , Citosol/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Fotossíntese/genética , Filogenia , Plantas/genética
6.
J Eukaryot Microbiol ; 65(5): 729-732, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29345018

RESUMO

Quadricilia rotundata is a heterotrophic flagellate with four flagella. However, because this species has no clear morphological characteristics or molecular data affiliating it with any known group, Q. rotundata has been treated as a protist incertae sedis, for a long time. Here, we established a clonal culture of Q. rotundata and sequenced its 18S rDNA sequence. Molecular phylogenetic analysis successfully placed Q. rotundata in an environmental clade within Cercozoa, which contributes to expand the morphological and species diversity within Cercozoa. We also discuss morphological evolution within Cercozoa based on this finding.


Assuntos
Cercozoários/classificação , Cercozoários/isolamento & purificação , Filogenia , Cercozoários/genética , Cercozoários/metabolismo , DNA de Protozoário/genética , DNA Ribossômico/genética , Processos Heterotróficos , RNA Ribossômico 18S/genética
7.
Nature ; 492(7427): 59-65, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23201678

RESUMO

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.


Assuntos
Núcleo Celular/genética , Cercozoários/genética , Criptófitas/genética , Evolução Molecular , Genoma/genética , Mosaicismo , Simbiose/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Processamento Alternativo/genética , Cercozoários/citologia , Cercozoários/metabolismo , Criptófitas/citologia , Criptófitas/metabolismo , Citosol/metabolismo , Duplicação Gênica/genética , Transferência Genética Horizontal/genética , Genes Essenciais/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética
8.
J Plant Res ; 130(6): 999-1012, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28642986

RESUMO

A new chlorarachniophyte, Viridiuvalis adhaerens gen. et sp. nov. was isolated from the mucus on a coral reef from Zanpa Beach, Okinawa, Japan. The main vegetative stage of V. adhaerens consisted of unicellular coccoid cells with cell walls, although sarcinoid colonies and uniflagellate zoospores were also observed. V. adhaerens had chloroplasts with nucleomorphs and pyrenoids that were completely embedded in the chloroplast. A deep plate-like invagination of the periplastidal compartment (PPC) almost partitioned the pyrenoid and chloroplast components, which were surrounded by two membranes. The nucleomorph was positioned in the base of the invagination of the PPC. Molecular phylogenetic analyses using rRNA genes showed that V. adhaerens branched as a sister lineage of the Amorphochlora clade. The sarcinoid colony, pyrenoid embedded in the chloroplast, and nucleomorph located at the base of the deep invagination of the PPC have not been reported in other chlorarachniophytes. Based on these morphological and ultrastructural characteristics and the results of the molecular phylogenetic analyses, we propose V. adhaerens as a new genus and species of chlorarachniophyte.


Assuntos
Cercozoários , Plastídeos/ultraestrutura , Cercozoários/genética , Cercozoários/ultraestrutura , Cloroplastos/genética , Cloroplastos/ultraestrutura , DNA Ribossômico/química , DNA Ribossômico/genética , Japão , Microscopia Eletrônica de Transmissão , Filogenia , Plastídeos/genética , Análise de Sequência de DNA
9.
Mol Biol Evol ; 32(10): 2598-604, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26048548

RESUMO

Organisms with nonphotosynthetic plastids often retain genomes; their gene contents provide clues as to the functions of these organelles. Yet the functional roles of some retained genes-such as those coding for ATP synthase-remain mysterious. In this study, we report the complete plastid genome and transcriptome data of a nonphotosynthetic diatom and propose that its ATP synthase genes may function in ATP hydrolysis to maintain a proton gradient between thylakoids and stroma, required by the twin arginine translocator (Tat) system for translocation of particular proteins into thylakoids. Given the correlated retention of ATP synthase genes and genes for the Tat system in distantly related nonphotosynthetic plastids, we suggest that this Tat-related role for ATP synthase was a key constraint during parallel loss of photosynthesis in multiple independent lineages of algae/plants.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Diatomáceas/genética , Genomas de Plastídeos , Fotossíntese , Sistema de Translocação de Argininas Geminadas/metabolismo , Modelos Biológicos , Filogenia , Mapeamento Físico do Cromossomo
10.
J Eukaryot Microbiol ; 63(6): 722-731, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27061962

RESUMO

A novel cercozoan filose thecate amoeba, Trachyrhizium urniformis n. g., n. sp., was isolated from a marine sediment sample collected at Agenashiku Island, Okinawa, Japan. We performed light and electron microscopic observations, and a molecular phylogenetic analysis using the small subunit ribosomal RNA gene of the isolate. Cells of T. urniformis are spherical in shape and are covered by a thin theca possessing a wide rounded aperture. Branching and occasionally anastomosing filopodia with small granules emerge from the aperture. The granules are transported in the filopodia bidirectionally. Transmission electron microscopy showed that cells of T. urniformis possess nucleus with permanently condensed chromatin, Golgi apparatuses, microbodies, mitochondria with tubular cristae, and extrusomes. Several morphological and ultrastructural features of T. urniformis (the presence of thecae and nucleus with permanently condensed chromatin) show similarities with those of Thecofilosea. In a phylogenetic analysis, T. urniformis included in Thecofilosea with weak statistical supports and formed a clade with two sequences that constitutes a cercozoan environmental clade, novel clade 4. On the basis of morphological and ultrastructural information and the results of the phylogenetic analysis, we propose T. urniformis as a new member of class Thecofilosea.


Assuntos
Amoeba/classificação , Amoeba/isolamento & purificação , Sedimentos Geológicos/parasitologia , Amoeba/genética , Amoeba/ultraestrutura , DNA de Protozoário/genética , DNA Ribossômico/genética , Microscopia Eletrônica de Transmissão , Filogenia
11.
J Eukaryot Microbiol ; 63(3): 280-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26452446

RESUMO

The genus Entamoeba includes anaerobic lobose amoebae, most of which are parasites of various vertebrates and invertebrates. We report a new Entamoeba species, E. marina n. sp. that was isolated from a sample of tidal flat sediment collected at Iriomote Island, Okinawa, Japan. Trophozoites of E. marina were 12.8-32.1 µm in length and 6.8-15.9 µm in width, whereas the cysts were 8.9-15.8 µm in diam. and contained four nuclei. The E. marina cells contained a rounded nucleus with a small centric karyosome and uniformly arranged peripheral chromatin. Although E. marina is morphologically indistinguishable from other tetranucleated cyst-forming Entamoeba species, E. marina can be distinguished from them based on the combination of molecular phylogenetic analyses using SSU rDNA gene and the difference of collection sites. Therefore, we propose E. marina as a new species of the genus Entamoeba.


Assuntos
Entamoeba/genética , Entamoeba/isolamento & purificação , Sedimentos Geológicos/parasitologia , Animais , Cistos/ultraestrutura , DNA de Protozoário , DNA Ribossômico/genética , Entamoeba/classificação , Entamoeba/citologia , Ilhas , Japão , Microscopia Eletrônica , RNA de Protozoário , Análise de Sequência de DNA , Especificidade da Espécie , Trofozoítos/citologia , Trofozoítos/ultraestrutura
12.
J Eukaryot Microbiol ; 63(6): 804-812, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27218475

RESUMO

We report a new heterotrophic cryptomonad Hemiarma marina n. g., n. sp. that was collected from a seaweed sample from the Republic of Palau. In our molecular phylogenetic analyses using the small subunit ribosomal RNA gene, H. marina formed a clade with two marine environmental sequences, and the clade was placed as a sister lineage of the freshwater cryptomonad environmental clade CRY1. Alternatively, in the concatenated large and small subunit ribosomal RNA gene phylogeny, H. marina was placed as a sister lineage of Goniomonas. Light and electron microscopic observations showed that H. marina shares several ultrastructural features with cryptomonads, such as flattened mitochondrial cristae, a periplast cell covering, and ejectisomes that consist of two coiled ribbon structures. On the other hand, H. marina exhibited unique behaviors, such as attaching to substrates with its posterior flagellum and displaying a jumping motion. H. marina also had unique periplast arrangement and flagellar transitional region. On the basis of both molecular and morphological information, we concluded that H. marina should be treated as new genus and species of cryptomonads.


Assuntos
Criptófitas/isolamento & purificação , Água do Mar/parasitologia , Criptófitas/classificação , Criptófitas/genética , Criptófitas/ultraestrutura , DNA Ribossômico/genética , Flagelos/genética , Flagelos/ultraestrutura , Processos Heterotróficos , Microscopia Eletrônica de Transmissão , Filogenia
13.
J Plant Res ; 129(4): 581-590, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26920842

RESUMO

Chlorarachniophyte algae have complex plastids acquired by the uptake of a green algal endosymbiont, and this event is called secondary endosymbiosis. Interestingly, the plastids possess a relict endosymbiont nucleus, referred to as the nucleomorph, in the intermembrane space, and the nucleomorphs contain an extremely reduced and compacted genome in comparison with green algal nuclear genomes. Therefore, chlorarachniophyte plastids consist of two endosymbiotically derived genomes, i.e., the plastid and nucleomorph genomes. To date, complete nucleomorph genomes have been sequenced in four different species, whereas plastid genomes have been reported in only two species in chlorarachniophytes. To gain further insight into the evolution of endosymbiotic genomes in chlorarachniophytes, we newly sequenced the plastid genomes of three species, Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia. Our findings reveal that chlorarachniophyte plastid genomes are highly conserved in size, gene content, and gene order among species, but their nucleomorph genomes are divergent in such features. Accordingly, the current architecture of the plastid genomes of chlorarachniophytes evolved in a common ancestor, and changed very little during their subsequent diversification. Furthermore, our phylogenetic analyses using multiple plastid genes suggest that chlorarachniophyte plastids are derived from a green algal lineage that is closely related to Bryopsidales in the Ulvophyceae group.


Assuntos
Clorófitas/genética , Sequência Conservada/genética , Genomas de Plastídeos , Sequência de Bases , Íntrons/genética , Funções Verossimilhança , Filogenia , Especificidade da Espécie
14.
Mol Biol Evol ; 31(6): 1437-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24603278

RESUMO

Chlorarachniophytes and cryptophytes possess complex plastids that were acquired by the ingestion of a green and red algal endosymbiont, respectively. The plastids are surrounded by four membranes, and a relict nucleus, called the nucleomorph, remains in the periplastidal compartment, which corresponds to the remnant cytoplasm of the endosymbiont. Nucleomorphs contain a greatly reduced genome that possesses only several hundred genes with high evolutionary rates. We examined the relative transcription levels of the genes of all proteins encoded by the nucleomorph genomes of two chlorarachniophytes and three cryptophytes using an RNA-seq transcriptomic approach. The genes of two heat shock proteins, Hsp70 and Hsp90, were highly expressed under normal conditions. It has been shown that molecular chaperone overexpression allows an accumulation of genetic mutations in bacteria. Our results suggest that overexpression of heat shock proteins in nucleomorph genomes may play a role in buffering the mutational destabilization of proteins, which might allow the high evolutionary rates of nucleomorph-encoded proteins.


Assuntos
Clorófitas/genética , Criptófitas/genética , Chaperonas Moleculares/genética , Plastídeos/genética , Núcleo Celular/genética , Clorófitas/classificação , Clorófitas/citologia , Cromossomos , Criptófitas/classificação , Criptófitas/citologia , Evolução Molecular , Genomas de Plastídeos , Taxa de Mutação , Filogenia , Análise de Sequência de RNA , Simbiose , Regulação para Cima
15.
BMC Plant Biol ; 15: 276, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26556725

RESUMO

BACKGROUND: Division of double-membraned plastids (primary plastids) is performed by constriction of a ring-like division complex consisting of multiple plastid division proteins. Consistent with the endosymbiotic origin of primary plastids, some of the plastid division proteins are descended from cyanobacterial cell division machinery, and the others are of host origin. In several algal lineages, complex plastids, the "secondary plastids", have been acquired by the endosymbiotic uptake of primary plastid-bearing algae, and are surrounded by three or four membranes. Although homologous genes for primary plastid division proteins have been found in genome sequences of secondary plastid-bearing organisms, little is known about the function of these proteins or the mechanism of secondary plastid division. RESULTS: To gain insight into the mechanism of secondary plastid division, we characterized two plastid division proteins, FtsZD-1 and FtsZD-2, in chlorarachniophyte algae. FtsZ homologs were encoded by the nuclear genomes and carried an N-terminal plastid targeting signal. Immunoelectron microscopy revealed that both FtsZD-1 and FtsZD-2 formed a ring-like structure at the midpoint of bilobate plastids with a projecting pyrenoid in Bigelowiella natans. The ring was always associated with a shallow plate-like invagination of the two innermost plastid membranes. Furthermore, gene expression analysis confirmed that transcripts of ftsZD genes were periodically increased soon after cell division during the B. natans cell cycle, which is not consistent with the timing of plastid division. CONCLUSIONS: Our findings suggest that chlorarachniophyte FtsZD proteins are involved in partial constriction of the inner pair of plastid membranes, but not in the whole process of plastid division. It is uncertain how the outer pair of plastid membranes is constricted, and as-yet-unknown mechanism is required for the secondary plastid division in chlorarachniophytes.


Assuntos
Cercozoários/genética , Proteínas de Cloroplastos/genética , Expressão Gênica , Proteínas de Protozoários/genética , Cercozoários/citologia , Cercozoários/metabolismo , Proteínas de Cloroplastos/metabolismo , Plastídeos/metabolismo , Proteínas de Protozoários/metabolismo
16.
J Eukaryot Microbiol ; 62(5): 637-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25912654

RESUMO

Apusomonads comprise an understudied and undersampled group of heterotrophic flagellates that is closely related to opisthokonts, the supergroup containing animals and fungi. We cultured representatives of a new clade of apusomonads, Chelonemonas n. gen., which is sister to marine forms of Thecamonas in SSU rRNA gene phylogenies. Scanning electron microscopy shows that members of Chelonemonas have a hexagonal patterning to their submembranous pellicle, which is not known to exist in other apusomonads. We propose that the subfamily Thecamonadinae refer to the marine Thecamonas/Chelonomonas clade. We also report two new strains of Multimonas, one of which is genetically divergent from previously described strains, and here described as a new species, Multimonas koreensis. Both strains of Multimonas have appendages on their dorsal surface that could be extrusomes, and a frilled appearance to the border of their pellicle. Explorations of taxon sampling in SSU rRNA gene phylogenies confirm the new strains' evolutionary affinities, but do not resolve relationships among the five main apusomonad clades. These phylogenies also separate the freshwater species "Thecamonas" oxoniensis from the marine members of the genus Thecamonas. The new strains described here may provide valuable genetic and morphological data for evaluating the relationships and evolution of apusomonads.


Assuntos
Eucariotos/classificação , Eucariotos/isolamento & purificação , Animais , Evolução Biológica , Eucariotos/citologia , Eucariotos/genética , Genes de RNAr , Variação Genética , Processos Heterotróficos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S , Análise de Sequência de DNA
17.
J Plant Res ; 128(2): 249-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25516501

RESUMO

This study investigated the taxonomic affiliation of the algal strain nak-9, which has been reported to absorb radioactive cesium with high efficiency, using light and electron microscopy, and molecular phylogenetic analysis based on 18S ribosomal RNA gene (rDNA) sequences. This alga is spherical and coccoid, with a smooth cell wall, large vacuole, crystalline structure, reddish globule, and refractile granules (lamellate vesicles). The cells possess one to several greenish parietal chloroplasts with a bulging pyrenoid surrounded by lamellate vesicles. The chloroplasts include orderly thylakoid lamellae but no girdle lamella. Molecular phylogenetic analysis suggests that strain nak-9 is a member of the eustigmatophycean clade, which includes Goniochloris, Pseudostaurastrum, and Trachydiscus. On the basis of these results, we propose that strain nak-9 (NIES-2860) comprises a new species and new genus of the Eustigmatophyceae, Vacuoliviride crystalliferum gen. et sp. nov.


Assuntos
Estramenópilas/classificação , Estramenópilas/genética , Proteínas de Algas/genética , Cloroplastos/ultraestrutura , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Estramenópilas/citologia , Estramenópilas/ultraestrutura
18.
Proc Natl Acad Sci U S A ; 109(43): 17328-35, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22949677

RESUMO

Chlorophylls are essential components of the photosynthetic apparati that sustain all of the life forms that ultimately depend on solar energy. However, a drawback of the extraordinary photosensitizing efficiency of certain chlorophyll species is their ability to generate harmful singlet oxygen. Recent studies have clarified the catabolic processes involved in the detoxification of chlorophylls in land plants, but little is understood about these strategies in aquatic ecosystem. Here, we report that a variety of heterotrophic protists accumulate the chlorophyll a catabolite 13(2),17(3)-cyclopheophorbide a enol (cPPB-aE) after their ingestion of algae. This chlorophyll derivative is nonfluorescent in solution, and its inability to generate singlet oxygen in vitro qualifies it as a detoxified catabolite of chlorophyll a. Using a modified analytical method, we show that cPPB-aE is ubiquitous in aquatic environments, and it is often the major chlorophyll a derivative. Our findings suggest that cPPB-aE metabolism is one of the most important, widely distributed processes in aquatic ecosystems. Therefore, the herbivorous protists that convert chlorophyll a to cPPB-aE are suggested to play more significant roles in the modern oceanic carbon flux than was previously recognized, critically linking microscopic primary producers to the macroscopic food web and carbon sequestration in the ocean.


Assuntos
Clorofila/metabolismo , Herbivoria , Plantas/metabolismo , Evolução Biológica , Fotossíntese
19.
J Eukaryot Microbiol ; 61(3): 317-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444111

RESUMO

Most euglyphids, a group of testate amoebae, have a shell that is constructed from numerous siliceous scales. The euglyphid Paulinella chromatophora has photosynthetic organelles (termed cyanelles or chromatophores), allowing it to be cultivated more easily than other euglyphids. Like other euglyphids, P. chromatophora has a siliceous shell made of brick-like scales. These scales are varied in size and shape. How a P. chromatophora cell makes this shell is still a mystery. We examined shell construction process in P. chromatophora in detail using time-lapse video microscopy. The new shell was constructed by a specialized pseudopodium that laid out each scale into correct position, one scale at a time. The present study inferred that the sequence of scale production and secretion was well controlled.


Assuntos
Parede Celular/metabolismo , Cercozoários/citologia , Cercozoários/fisiologia , Cercozoários/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Microscopia de Vídeo , Imagem com Lapso de Tempo
20.
J Plant Res ; 127(1): 79-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24346654

RESUMO

The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 10¹7 Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.


Assuntos
Cianobactérias/metabolismo , Acidente Nuclear de Fukushima , Rodófitas/metabolismo , Estramenópilas/metabolismo , Viridiplantae/metabolismo , Poluentes Radioativos da Água/metabolismo , Biodegradação Ambiental , Radioisótopos de Césio/análise , Radioisótopos de Césio/metabolismo , Cianobactérias/química , Cianobactérias/efeitos dos fármacos , Radioisótopos do Iodo/análise , Radioisótopos do Iodo/metabolismo , Japão , Centrais Nucleares , Filogenia , Potássio/farmacologia , Rodófitas/efeitos dos fármacos , Estramenópilas/química , Estramenópilas/efeitos dos fármacos , Radioisótopos de Estrôncio/análise , Radioisótopos de Estrôncio/metabolismo , Viridiplantae/química , Viridiplantae/efeitos dos fármacos , Poluentes Radioativos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA