Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36198317

RESUMO

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Anticorpos Antivirais , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568035

RESUMO

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/virologia , Cricetinae , Células Epiteliais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
4.
EMBO J ; 42(20): e112573, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661814

RESUMO

Mitochondrial DNA (mtDNA) leakage into the cytoplasm can occur when cells are exposed to noxious stimuli. Specific sensors recognize cytoplasmic mtDNA to promote cytokine production. Cytoplasmic mtDNA can also be secreted extracellularly, leading to sterile inflammation. However, the mode of secretion of mtDNA out of cells upon noxious stimuli and its relevance to human disease remain unclear. Here, we show that pyroptotic cells secrete mtDNA encapsulated within exosomes. Activation of caspase-1 leads to mtDNA leakage from the mitochondria into the cytoplasm via gasdermin-D. Caspase-1 also induces intraluminal membrane vesicle formation, allowing for cellular mtDNA to be taken up and secreted as exosomes. Encapsulation of mtDNA within exosomes promotes a strong inflammatory response that is ameliorated upon exosome biosynthesis inhibition in vivo. We further show that monocytes derived from patients with Behçet's syndrome (BS), a chronic systemic inflammatory disorder, show enhanced caspase-1 activation, leading to exosome-mediated mtDNA secretion and similar inflammation pathology as seen in BS patients. Collectively, our findings support that mtDNA-containing exosomes promote inflammation, providing new insights into the propagation and exacerbation of inflammation in human inflammatory diseases.


Assuntos
Síndrome de Behçet , Exossomos , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Síndrome de Behçet/genética , Síndrome de Behçet/metabolismo , Exossomos/genética , Mitocôndrias/genética , Inflamação/metabolismo , Caspases/metabolismo
5.
Nat Immunol ; 15(11): 1064-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25240383

RESUMO

It remains largely unclear how antigen-presenting cells (APCs) encounter effector or memory T cells efficiently in the periphery. Here we used a mouse contact hypersensitivity (CHS) model to show that upon epicutaneous antigen challenge, dendritic cells (DCs) formed clusters with effector T cells in dermal perivascular areas to promote in situ proliferation and activation of skin T cells in a manner dependent on antigen and the integrin LFA-1. We found that DCs accumulated in perivascular areas and that DC clustering was abrogated by depletion of macrophages. Treatment with interleukin 1α (IL-1α) induced production of the chemokine CXCL2 by dermal macrophages, and DC clustering was suppressed by blockade of either the receptor for IL-1 (IL-1R) or the receptor for CXCL2 (CXCR2). Our findings suggest that the dermal leukocyte cluster is an essential structure for elicitating acquired cutaneous immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Dermatite de Contato/imunologia , Pele/imunologia , Animais , Antígeno CD11c/genética , Proliferação de Células , Quimiocina CXCL2/biossíntese , Feminino , Memória Imunológica/imunologia , Interleucina-1alfa/farmacologia , Ativação Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Neutrófilos/imunologia , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Pele/patologia
6.
J Immunol ; 212(3): 455-465, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063488

RESUMO

Immune checkpoint blockade (ICB) immunotherapies have emerged as promising strategies for the treatment of cancer; however, there remains a need to improve their efficacy. Determinants of ICB efficacy are the frequency of tumor mutations, the associated neoantigens, and the T cell response against them. Therefore, it is expected that neoantigen vaccinations that boost the antitumor T cell response would improve ICB therapy efficacy. The aim of this study was to develop a highly immunogenic vaccine using pattern recognition receptor agonists in combination with synthetic long peptides to induce potent neoantigen-specific T cell responses. We determined that the combination of the TLR9 agonist K-type CpG oligodeoxynucleotides (K3 CpG) with the STING agonist c-di-AMP (K3/c-di-AMP combination) significantly increased dendritic cell activation. We found that immunizing mice with 20-mer of either an OVA peptide, low-affinity OVA peptides, or neopeptides identified from mouse melanoma or lung mesothelioma, together with K3/c-di-AMP, induced potent Ag-specific T cell responses. The combined K3/c-di-AMP adjuvant formulation induced 10 times higher T cell responses against neopeptides than the TLR3 agonist polyinosinic:polycytidylic acid, a derivative of which is the leading adjuvant in clinical trials of neoantigen peptide vaccines. Moreover, we demonstrated that our K3/c-di-AMP vaccine formulation with 20-mer OVA peptide was capable of controlling tumor growth and improving survival in B16-F10-OVA tumor-bearing C57BL/6 mice and synergized with anti-PD-1 treatment. Together, our findings demonstrate that the K3/c-di-AMP vaccine formulation induces potent T cell immunity against synthetic long peptides and is a promising candidate to improve neoantigen vaccine platform.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Animais , Camundongos , Linfócitos T , Inibidores de Checkpoint Imunológico , Receptor Toll-Like 9 , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Antígenos , Peptídeos
7.
Eur J Immunol ; : e2350957, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030805

RESUMO

Incomplete Freund's adjuvant (IFA) has been used for many years to induce autoimmune diseases in animal models, including experimental autoimmune encephalitis and collagen-induced arthritis. However, it remains unclear why it is necessary to emulsify autoantigen and heat-killed Mycobacterium tuberculosis (HKMtb) with IFA to induce experimental autoimmune diseases. Here, we found that immunization with self-antigen and HKMtb was insufficient to induce autoimmune diseases in mice. Furthermore, IFA or one of its components, mineral oil, but not mannide monooleate, was required for the development of experimental autoimmune disease. Immunization with autoantigen and HKMtb emulsified in mineral oil facilitated innate immune activation and promoted the differentiation of pathogenic CD4+ T cells, followed by their accumulation in neuronal tissues. Several water-soluble hydrocarbon compounds were identified in mineral oil. Of these, immunization with HKMtb and autoantigen emulsified with the same amount of hexadecane or tridecylcyclohexane as mineral oil induced the development of experimental autoimmune encephalitis. In contrast, immunization with HKMtb and autoantigen emulsified with tridecylcyclohexane, but not hexadecane, at doses equivalent to those found in mineral oil, resulted in neuronal dysfunction. These data indicate that tridecylcyclohexane in mineral oil is a critical component in the induction of experimental autoimmune disease.

8.
Int Immunol ; 36(7): 339-352, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38430523

RESUMO

Bone marrow is a dynamic organ composed of stem cells that constantly receive signals from stromal cells and other hematopoietic cells in the niches of the bone marrow to maintain hematopoiesis and generate immune cells. Perturbation of the bone marrow microenvironment by infection and inflammation affects hematopoiesis and may affect immune cell development. Little is known about the effect of malaria on the bone marrow stromal cells that govern the hematopoietic stem cell (HSC) niche. In this study, we demonstrate that the mesenchymal stromal CXCL12-abundant reticular (CAR) cell population is reduced during acute malaria infection. The reduction of CXCL12 and interleukin-7 signals in the bone marrow impairs the lymphopoietic niche, leading to the depletion of common lymphoid progenitors, B cell progenitors, and mature B cells, including plasma cells in the bone marrow. We found that interferon-γ (IFNγ) is responsible for the upregulation of Sca1 on CAR cells, yet the decline in CAR cell and B cell populations in the bone marrow is IFNγ-independent. In contrast to the decline in B cell populations, HSCs and multipotent progenitors increased with the expansion of myelopoiesis and erythropoiesis, indicating a bias in the differentiation of multipotent progenitors during malaria infection. These findings suggest that malaria may affect host immunity by modulating the bone marrow niche.


Assuntos
Linfócitos B , Medula Óssea , Quimiocina CXCL12 , Malária , Camundongos Endogâmicos C57BL , Animais , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/imunologia , Camundongos , Malária/imunologia , Malária/parasitologia , Linfócitos B/imunologia , Medula Óssea/imunologia , Medula Óssea/parasitologia , Nicho de Células-Tronco/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo
9.
Int Immunol ; 36(9): 451-464, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38642134

RESUMO

Chronic bone loss is an under-recognized complication of malaria, the underlying mechanism of which remains incompletely understood. We have previously shown that persistent accumulation of Plasmodium products in the bone marrow leads to chronic inflammation in osteoblast (OB) and osteoclast (OC) precursors causing bone loss through MyD88, an adaptor molecule for diverse inflammatory signals. However, the specific contribution of MyD88 signaling in OB or OC precursors in malaria-induced bone loss remains elusive. To assess the direct cell-intrinsic role of MyD88 signaling in adult bone metabolism under physiological and infection conditions, we used the Lox-Cre system to specifically deplete MyD88 in the OB or OC lineages. Mice lacking MyD88 primarily in the maturing OBs showed a comparable decrease in trabecular bone density by microcomputed tomography to that of controls after Plasmodium yoelii non-lethal infection. In contrast, mice lacking MyD88 in OC precursors showed significantly less trabecular bone loss than controls, suggesting that malaria-mediated inflammatory mediators are primarily controlled by MyD88 in the OC lineage. Surprisingly, however, depletion of MyD88 in OB, but not in OC, precursors resulted in reduced bone mass with decreased bone formation rates in the trabecular areas of femurs under physiological conditions. Notably, insulin-like growth factor-1, a key molecule for OB differentiation, was significantly lower locally and systemically when MyD88 was depleted in OBs. Thus, our data demonstrate an indispensable intrinsic role for MyD88 signaling in OB differentiation and bone formation, while MyD88 signaling in OC lineages plays a partial role in controlling malaria-induced inflammatory mediators and following bone pathology. These findings may lead to the identification of novel targets for specific intervention of bone pathologies, particularly in malaria-endemic regions.


Assuntos
Remodelação Óssea , Homeostase , Malária , Camundongos Knockout , Fator 88 de Diferenciação Mieloide , Osteoblastos , Osteoclastos , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Malária/imunologia , Osteoblastos/metabolismo , Osteoblastos/imunologia , Camundongos , Osteoclastos/metabolismo , Osteoclastos/imunologia , Plasmodium yoelii/imunologia , Camundongos Endogâmicos C57BL
10.
Immunity ; 45(6): 1299-1310, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28002730

RESUMO

Particulate pollution is thought to function as an adjuvant that can induce allergic responses. However, the exact cell types and immunological factors that initiate the lung-specific immune responses are unclear. We found that upon intratracheal instillation, particulates such as aluminum salts and silica killed alveolar macrophages (AMs), which then released interleukin-1α (IL-1α) and caused inducible bronchus-associated lymphoid tissue (iBALT) formation in the lung. IL-1α release continued for up to 2 weeks after particulate exposure, and type-2 allergic immune responses were induced by the inhalation of antigen during IL-1α release and iBALT formation, even long after particulate instillation. Recombinant IL-1α was sufficient to induce iBALTs, which coincided with subsequent immunoglobulin E responses, and IL-1-receptor-deficient mice failed to induce iBALT formation. Therefore, the AM-IL-1α-iBALT axis might be a therapeutic target for particulate-induced allergic inflammation.


Assuntos
Brônquios/imunologia , Interleucina-1alfa/imunologia , Tecido Linfoide/imunologia , Macrófagos Alveolares/patologia , Material Particulado/toxicidade , Compostos de Alumínio/toxicidade , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Dióxido de Silício/toxicidade
11.
EMBO Rep ; 24(12): e57485, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870318

RESUMO

Bacterial infections can activate and mobilize hematopoietic stem and progenitor cells (HSPCs) from the bone marrow (BM) to the spleen, a process termed extramedullary hematopoiesis (EMH). Recent studies suggest that commensal bacteria regulate not only the host immune system but also hematopoietic homeostasis. However, the impact of gut microbes on hematopoietic pathology remains unclear. Here, we find that systemic single injections of Akkermansia muciniphila (A. m.), a mucin-degrading bacterium, rapidly activate BM myelopoiesis and slow but long-lasting hepato-splenomegaly, characterized by the expansion and differentiation of functional HSPCs, which we term delayed EMH. Mechanistically, delayed EMH triggered by A. m. is mediated entirely by the MYD88/TRIF innate immune signaling pathway, which persistently stimulates splenic myeloid cells to secrete interleukin (IL)-1α, and in turn, activates IL-1 receptor (IL-1R)-expressing splenic HSPCs. Genetic deletion of Toll-like receptor-2 and -4 (TLR2/4) or IL-1α partially diminishes A. m.-induced delayed EMH, while inhibition of both pathways alleviates splenomegaly and EMH. Our results demonstrate that cooperative IL-1R- and TLR-mediated signals regulate commensal bacteria-driven EMH, which might be relevant for certain autoimmune disorders.


Assuntos
Hematopoese Extramedular , Humanos , Hematopoese Extramedular/genética , Esplenomegalia/metabolismo , Medula Óssea , Células-Tronco Hematopoéticas/metabolismo , Hematopoese
12.
Biochem Biophys Res Commun ; 737: 150534, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39142137

RESUMO

Pancreatic cancer is one of the most refractory malignancies. In situ vaccines (ISV), in which intratumorally injected immunostimulatory adjuvants activate innate immunity at the tumor site, utilize tumor-derived patient-specific antigens, thereby allowing for the development of vaccines in patients themselves. Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapy that selectively kills cancer cells exclusively in the NIR-irradiated region. Extending our previous research showing that ISV using the unique nanoparticulate Toll-like receptor 9 (TLR9) ligand K3-SPG induced effective antitumor immunity, here we incorporated NIR-PIT into K3-SPG-ISV so that local tumor destruction by NIR-PIT augments the antitumor effect of ISV. In the mouse model of pancreatic cancer, the combination of K3-SPG-ISV and CD44-targeting NIR-PIT showed synergistic systemic antitumor effects and enhanced anti-programmed cell death-1 (PD-1) blockade. Mechanistically, strong intratumoral upregulation of interferon-related genes and dependency on CD8+ T cells were observed, suggesting the possible role of interferon and cytotoxic T cell responses in the induction of antitumor immunity. Importantly, this combination induced immunological memory in therapeutic and neoadjuvant settings. This study represents the first attempt to integrate NIR-PIT with ISV, offering a promising new direction for cancer immunotherapy, particularly for pancreatic cancer.

13.
Exp Dermatol ; 33(3): e15021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429832

RESUMO

Langerhans cells (LCs) are mainly present in the epidermis and mucosa, and have important roles during skin infection. Migration of LCs to lymph nodes is essential for antigen presentation. However, due to the difficulties in isolating and culturing human LCs, it is not fully understood how LCs move and interact with the extracellular matrix (ECM) through their adhesion molecules such as integrin, during the immune responses. In this study, we aimed to investigate LC motility, cell shape and the role of integrin under inflammatory conditions using monocyte-derived Langerhans cells (moLCs) as a model. As a result, lipopolysaccharide (LPS) stimulation increased adhesion on fibronectin coated substrate and integrin α5 expression in moLCs. Time-lapse imaging of moLCs revealed that stimulation with LPS elongated cell shape, whilst decreasing their motility. Additionally, this decrease in motility was not observed when pre-treated with a neutralising antibody targeting integrin α5. Together, our data suggested that activation of LCs decreases their motility by promoting integrin α5 expression to enhance their affinity to the fibronectin, which may contribute to their migration during inflammation.


Assuntos
Integrina alfa5 , Células de Langerhans , Humanos , Fibronectinas/metabolismo , Imunidade , Integrina alfa5/metabolismo , Integrinas/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos
14.
J Immunol ; 209(1): 171-179, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35725272

RESUMO

Damage-associated molecular patterns (DAMPs) contribute to antitumor immunity during cancer chemotherapy. We previously demonstrated that topotecan (TPT), a topoisomerase I inhibitor, induces DAMP secretion from cancer cells, which activates STING-mediated antitumor immune responses. However, how TPT induces DAMP secretion in cancer cells is yet to be elucidated. Here, we identified RPL15, a 60S ribosomal protein, as a novel TPT target and showed that TPT inhibited preribosomal subunit formation via its binding to RPL15, resulting in the induction of DAMP-mediated antitumor immune activation independent of TOP1. TPT inhibits RPL15-RPL4 interactions and decreases RPL4 stability, which is recovered by CDK12 activity. RPL15 knockdown induced DAMP secretion and increased the CTL population but decreased the regulatory T cell population in a B16-F10 murine melanoma model, which sensitized B16-F10 tumors against PD-1 blockade. Our study identified a novel TPT target protein and showed that ribosomal stress is a trigger of DAMP secretion, which contributes to antitumor immunotherapy.


Assuntos
Neoplasias , Topotecan , Animais , Camundongos , Neoplasias/tratamento farmacológico , Proteínas Ribossômicas , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Topotecan/uso terapêutico
15.
Biochem Biophys Res Commun ; 654: 1-9, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36871485

RESUMO

The skin is a protective interface between the internal organs and environment and functions not only as a physical barrier but also as an immune organ. However, the immune system in the skin is not fully understood. A member of the thermo-sensitive transient receptor potential (TRP) channel family, TRPM4, which acts as a regulatory receptor in immune cells, was recently reported to be expressed in human skin and keratinocytes. However, the function of TRPM4 in immune responses in keratinocytes has not been investigated. In this study, we found that treatment with BTP2, a known TRPM4 agonist, reduced cytokine production induced by tumor necrosis factor (TNF) α in normal human epidermal keratinocytes and in immortalized human epidermal keratinocytes (HaCaT cells). This cytokine-reducing effect was not observed in TRPM4-deficient HaCaT cells, indicating that TRPM4 contributed to the control of cytokine production in keratinocytes. Furthermore, we identified aluminum potassium sulfate, as a new TRPM4 activating agent. Aluminum potassium sulfate reduced Ca2+ influx by store-operated Ca2+ entry in human TRPM4-expressing HEK293T cells. We further confirmed that aluminum potassium sulfate evoked TRPM4-mediated currents, showing direct evidence for TRPM4 activation. Moreover, treatment with aluminum potassium sulfate reduced cytokine expression induced by TNFα in HaCaT cells. Taken together, our data suggested that TRPM4 may serve as a new target for the treatment of skin inflammatory reactions by suppressing the cytokine production in keratinocytes, and aluminum potassium sulfate is a useful ingredient to prevent undesirable skin inflammation through TRPM4 activation.


Assuntos
Dermatite , Canais de Cátion TRPM , Humanos , Células HEK293 , Queratinócitos/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunidade , Canais de Cátion TRPM/metabolismo
16.
Int Immunol ; 34(7): 353-364, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35419609

RESUMO

Agonists for TLR9 and stimulator of IFN genes (STING) offer therapeutic applications as both anti-tumor agents and vaccine adjuvants, though their clinical applications are limited; the clinically available TLR9 agonist is a weak IFN inducer and STING agonists induce undesired type 2 immunity. Yet, combining TLR9 and STING agonists overcame these limitations by synergistically inducing innate and adaptive IFNγ to become an advantageous type 1 adjuvant, suppressing type 2 immunity, in addition to exerting robust anti-tumor activities when used as a monotherapeutic agent for cancer immunotherapy. Here, we sought to decipher the immunological mechanisms behind the synergism mediated by TLR9 and STING agonists and found that their potent anti-tumor immunity in a Pan02 peritoneal dissemination model of pancreatic cancer was achieved only when agonists for TLR9 and STING were administered locally, and was via mechanisms involving CD4 and CD8 T cells as well as the co-operative action of IL-12 and type I IFNs. Rechallenge studies of long-term cancer survivors suggested that the elicitation of Pan02-specific memory responses provides protection against the secondary tumor challenge. Mechanistically, we found that TLR9 and STING agonists synergistically induce IL-12 and type I IFN production in murine APCs. The synergistic effect of the TLR9 and STING agonists on IL-12p40 was at protein, mRNA and promoter activation levels, and transcriptional regulation was mediated by a 200 bp region situated 983 bp upstream of the IL-12p40 transcription initiation site. Such intracellular transcriptional synergy may hold a key in successful cancer immunotherapy and provide further insights into dual agonism of innate immune sensors during host homeostasis and diseases.


Assuntos
Proteínas de Membrana , Neoplasias , Receptor Toll-Like 9 , Adjuvantes Imunológicos/farmacologia , Animais , Imunoterapia , Interleucina-12 , Subunidade p40 da Interleucina-12 , Proteínas de Membrana/metabolismo , Camundongos , Receptor Toll-Like 9/metabolismo
17.
Int Immunol ; 33(11): 587-594, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34455438

RESUMO

Cerebral malaria (CM) is a life-threatening complication of the malaria disease caused by Plasmodium falciparum infection and is responsible for the death of half a million people annually. The molecular pathogenesis underlying CM in humans is not completely understood, although sequestration of infected erythrocytes in cerebral microvessels is thought to play a major role. In contrast, experimental cerebral malaria (ECM) models in mice have been thought to be distinct from human CM, and are mainly caused by inflammatory mediators. Here, to understand the spatial distribution and the potential sequestration of parasites in the whole-brain microvessels during a mouse model of ECM, we utilized the new tissue-clearing method CUBIC (Clear, Unobstructed, Brain/Body Imaging Cocktails and Computational analysis) with light-sheet fluorescent microscopy (LSFM), and reconstructed images in three dimensions (3D). We demonstrated significantly greater accumulation of Plasmodium berghei ANKA (PbANKA) parasites in the olfactory bulb (OB) of mice, compared with the other parts of the brain, including the cerebral cortex, cerebellum and brainstem. Furthermore, we show that PbANKA parasites preferentially accumulate in the brainstem when the OB is surgically removed. This study therefore not only highlights a successful application of CUBIC tissue-clearing technology to visualize the whole brain and its microvessels during ECM, but it also shows CUBIC's future potential for visualizing pathological events in the whole ECM brain at the cellular level, an achievement that would greatly advance our understanding of human cerebral malaria.


Assuntos
Encéfalo/patologia , Malária Cerebral/patologia , Animais , Encéfalo/imunologia , Encéfalo/parasitologia , Modelos Animais de Doenças , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/imunologia
18.
BMC Cancer ; 22(1): 744, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799134

RESUMO

BACKGROUND: Cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) (K3)-a novel synthetic single-stranded DNA immune adjuvant for cancer immunotherapy-induces a potential Th1-type immune response against cancer cells. We conducted a phase I study of CpG ODN (K3) in patients with lung cancer to assess its safety and patients' immune responses. METHODS: The primary endpoint was the proportion of dose-limiting toxicities (DLTs) at each dose level. Secondary endpoints included safety profile, an immune response, including dynamic changes in immune cell and cytokine production, and progression-free survival (PFS). In a 3 + 3 dose-escalation design, the dosage levels for CpG ODN (K3) were 5 or 10 mg/body via subcutaneous injection and 0.2 mg/kg via intravenous administration on days 1, 8, 15, and 29. RESULTS: Nine patients (eight non-small-cell lung cancer; one small-cell lung cancer) were enrolled. We found no DLTs at any dose level and observed no serious treatment-related adverse events. The median observation period after registration was 55 days (range: 46-181 days). Serum IFN-α2 levels, but not inflammatory cytokines, increased in six patients after the third administration of CpG ODN (K3) (mean value: from 2.67 pg/mL to 3.61 pg/mL after 24 hours). Serum IFN-γ (mean value, from 9.07 pg/mL to 12.7 pg/m after 24 hours) and CXCL10 levels (mean value, from 351 pg/mL to 676 pg/mL after 24 hours) also increased in eight patients after the third administration. During the treatment course, the percentage of T-bet-expressing CD8+ T cells gradually increased (mean, 49.8% at baseline and 59.1% at day 29, p = 0.0273). Interestingly, both T-bet-expressing effector memory (mean, 52.7% at baseline and 63.7% at day 29, p = 0.0195) and terminally differentiated effector memory (mean, 82.3% at baseline and 90.0% at day 29, p = 0.0039) CD8+ T cells significantly increased. The median PFS was 398 days. CONCLUSIONS: This is the first clinical study showing that CpG ODN (K3) activated innate immunity and elicited Th1-type adaptive immune response and cytotoxic activity in cancer patients. CpG ODN (K3) was well tolerated at the dose settings tested, although the maximum tolerated dose was not determined. TRIAL REGISTRATION: UMIN-CTR number 000023276. Registered 1 September 2016, https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000026649.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Imunidade Adaptativa , Adjuvantes Imunológicos/efeitos adversos , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Citosina , Guanina , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Oligodesoxirribonucleotídeos/efeitos adversos , Fosfatos , Receptor Toll-Like 9
19.
Exp Dermatol ; 30(6): 792-803, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33455013

RESUMO

Primary cilia influence cell activity, and thus have a unique role in maintaining cell proliferation and differentiation. In atopic dermatitis (AD) and psoriasis, areas of skin inflammation exhibit dysregulated keratinocyte homeostasis. The role of primary cilia in these conditions remains unclear. The objectives of this study is to elucidate the incidence of primary cilia in skin inflammation and the potential mechanism underlying the dysregulation of keratinocytes. Primary cilia were observed using immunofluorescence staining. Normal skin samples were compared with skin samples from patients with AD or psoriasis in terms of cilia numbers and length. The effect of cytokine stimulation on ciliogenesis in keratinocytes was analysed using a primary keratinocyte culture. IFT88, an important ciliary intraflagellar protein, was blocked in Th2 and Th17 cytokines-stimulated keratinocytes. These effects were analysed with quantitative polymerase chain reaction and Western blot. Significant increases in ciliated cells were observed in AD and psoriasis skin samples compared with normal skin samples. The stimulation of keratinocytes using Th2 and Th17 cytokines modulated the formation of primary cilia. The amount of IFT88 in the primary cilia associated with the phosphorylation of JNK, but not p38, in keratinocytes stimulated with interleukin-13, 17A and 22. An increase of ciliated cells in the epidermis may impair keratinocyte differentiation under stress conditions caused by inflammation in both AD and psoriasis patients.


Assuntos
Cílios/metabolismo , Dermatite Atópica/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Psoríase/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos
20.
Int Immunol ; 32(5): 359-368, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31879779

RESUMO

Heparin is used extensively as an anticoagulant in a broad range of diseases and procedures; however, its biological effects are not limited to coagulation and remain incompletely understood. Heparin usage can lead to the life-threatening complication known as heparin-induced thrombocytopenia (HIT), caused by the development of antibodies against heparin/PF4 complexes. Here, we demonstrate the ability of heparin to induce neutrophil extracellular traps (NETs). NETs occurred with cell lysis and death, but live neutrophils releasing extracellular DNA strands, known as vital NETs, also occurred abundantly. Formation of NETs was time and dose dependent, and required reactive oxygen species and neutrophil elastase. Other compounds related to heparin such as low molecular weight heparin, fondaparinux and heparan sulfate either failed to induce NETs, or did so to a much lesser extent. Our findings suggest the ability of heparin to directly induce NET formation should be considered in the context of heparin treatment and HIT pathogenesis.


Assuntos
Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Heparina/metabolismo , Elastase de Leucócito/metabolismo , Trombocitopenia/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA