Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(2): 1595-1602, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526849

RESUMO

BACKGROUND: Temporomandibular joint osteoarthritis (TMJ-OA) causes cartilage degeneration, bone cavitation, and fibrosis of the TMJ. However, the mechanisms underlying the fibroblast-like synoviocyte (FLS)-mediated inflammatory activity in TMJ-OA remain unclear. METHODS AND RESULTS: Reverse transcription-quantitative polymerase chain reaction analysis revealed that the P2Y1, P2Y12, and P2Y13 purinergic receptor agonist adenosine 5'-diphosphate (ADP) significantly induces monocyte chemotactic protein 1 (MCP-1)/ C-C motif chemokine ligand 2 (CCL2) expression in the FLS1 synovial cell line. In contrast, the uracil nucleotide UTP, which is a P2Y2 and P2Y4 agonist, has no significant effect on MCP-1/CCL2 production in FLS1 cells. In addition, the P2Y13 antagonist MRS 2211 considerably decreases the expression of ADP-induced MCP-1/CCL2, whereas ADP stimulation enhances extracellular signal-regulated kinase (ERK) phosphorylation. Moreover, it was found that the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor U0126 reduces ADP-induced MCP-1/CCL2 expression. CONCLUSION: ADP enhances MCP-1/CCL2 expression in TMJ FLSs via P2Y13 receptors in an MEK/ERK-dependent manner, thus resulting in inflammatory cell infiltration in the TMJ. Collectively, the findings of this study contribute to a partial clarification of the signaling pathway underlying the development of inflammation in TMJ-OA and can help identify potential therapeutic targets for suppressing ADP-mediated purinergic signaling in this disease.


Assuntos
Receptores Purinérgicos P2 , Sinoviócitos , Camundongos , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Difosfatos , Sinoviócitos/metabolismo , Ligantes , Receptores Purinérgicos P2/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Articulação Temporomandibular , Fibroblastos/metabolismo , Adenosina , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Células Cultivadas
2.
Calcif Tissue Int ; 110(1): 104-116, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363509

RESUMO

The pathophysiology, histopathology, and immunopathology of bisphosphonate-related osteonecrosis of the jaw (BRONJ) Stage 0 remain unclear. The aim of this study was to investigate the effects of high-dose bisphosphonates on tooth extraction socket healing by creating a murine model of BRONJ Stage 0-like lesions using 8-week-old female C57BL/6J mice. Zoledronic acid (Zol) was administered subcutaneously twice a week for 7 weeks at doses of 0.1 mg/kg/week (moderate dose; Zol-M), 0.5 mg/kg/week (high dose; Zol-H1), and 1.0 mg/kg/week (higher dose; Zol-H2). Saline was used as a control (VC). Both maxillary first molars were extracted 3 weeks after drug treatment. Maxillae, long bones, and sera were collected 4 weeks post-extraction (n = 7 mice/group). Microcomputed tomography, histological, immunohistochemical, and ELISA analyses were performed. A ceiling effect for Zol was noted at the Zol-H1 dose. Osseous healing of extraction sites was significantly impaired with increased necrotic bone and the number of empty lacunae in a Zol dose-dependent manner. Zol significantly decreased epithelial thickness, due to a decrease in thickness of the stratum spinosum, in both Zol-H1 and Zol-H2. Both Zol-H1 and Zol-H2 significantly suppressed the distribution of F4/80+ macrophages in the connective tissue of tooth extraction sockets, although gross healing appeared to be normal. Intriguingly, both Zol-H1 and Zol-H2 significantly increased the numbers of TRAP+ mononuclear cells and detached osteoclasts in the connective tissue and bone marrow of extraction sites compared to VC and Zol-M, correlated with serum TRAcP5b levels. The created murine model of BRONJ Stage 0-like lesions becoming more severe in a dose-dependent manner may help to understand the pathophysiology and histopathology of BRONJ Stage 0 in humans.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Animais , Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Extração Dentária , Alvéolo Dental , Microtomografia por Raio-X , Ácido Zoledrônico/farmacologia
3.
Exp Cell Res ; 358(2): 411-420, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28712928

RESUMO

Immunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization. Thus, the co-culture system consisting of bone marrow-derived Lin+ blood cells and MSCs under hypoxic condition was a beneficial supplier of a number of M2-Mφs, which could be clinically applicable to inflammatory diseases.


Assuntos
Medula Óssea/metabolismo , Comunicação Celular , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Anti-Inflamatórios/farmacologia , Diferenciação Celular/imunologia , Hipóxia Celular , Células Cultivadas , Técnicas de Cocultura , Macrófagos/imunologia , Camundongos , Molécula 1 de Adesão de Célula Vascular/metabolismo
4.
J Oral Biosci ; 66(1): 151-159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38030062

RESUMO

OBJECTIVES: This study aimed to clarify the molecular mechanism underlying the higher invasion and metastasis abilities of LMF4 cells than those of HSC-3 cells by comparing the expression levels of the tumor suppressor factor, cell adhesion molecule 1 (CADM1). METHODS: We explored 1) whether CADM1 expression level was downregulated in LMF4 cells compared with HSC-3 cells, 2) whether CADM1 expression knockdown increased the expression levels of matrix metalloproteinases (MMPs), 3) the exact cellular signaling pathways responsible for increased MMP expression after knockdown of CADM1 expression, and 4) whether disruption of CADM1-dependent HSC-3 cell adhesion increased the migratory and invasive activities of HSC-3 cells. RESULTS: CADM1 expression was lower in the LMF4 than in the HSC-3 cells. The knockdown of CADM1 increased the expression of MMP-2 and MMP-9 in HSC-3 cells. In addition, the upregulation of MMP-2 expression after CADM1 knockdown was abrogated by the mitogen-activated protein (MAP)/extracellular signal-regulated kinase kinase (MEK) inhibitor U0126 and the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. The upregulation of MMP-9 expression after the knockdown of CADM1 was abrogated by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the p38 MAP kinase (MAPK) inhibitor SB203580 and LY294002. Anti-CADM1 neutralizing antibody evoked migratory and invasive abilities of HSC-3 cells. CONCLUSION: The disruption of CADM1-dependent cell-cell adhesion in human oral squamous cell carcinoma cells resulted in tumor progression, possibly through an increase in MMP-2 expression in a MEK/PI3K-dependent manner and an increase in MMP-9 expression in a JNK/p38 MAPK/PI3K-dependent manner.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Adesão Celular/genética , Neoplasias Bucais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo
5.
J Oral Biosci ; 66(1): 68-75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266705

RESUMO

OBJECTIVES: Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-ß1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-ß1, on osteogenic differentiation in MSCs. METHODS: UE7T-13 cells were treated with TGF-ß1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining. RESULTS: Co-treatment with TGF-ß1 and CTGF resulted in the suppression of TGF-ß1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-ß1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-ß1. Osteopontin expression was observed only after TGF-ß1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-ß1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor. CONCLUSIONS: CTGF enhances TGF-ß1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.


Assuntos
Células-Tronco Mesenquimais , Proteína Quinase 14 Ativada por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
6.
Cell Physiol Biochem ; 32(4): 899-914, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24217646

RESUMO

BACKGROUND/AIMS: Remodeling of fibrous and vascular tissues in the periodontal ligament (PDL) around the tooth root was observed during tooth movement by orthodontic force application. We previously demonstrated that a single cell-derived culture (SCDC) of primarily cultured PDL fibroblasts, called SCDC2, has an endothelial progenitor cell (EPC)-like character and can form endothelial cell (EC) marker-positive blood vessel-like structures. However, the types of molecular mechanisms that control the in vivo kinetic properties and the differentiation of the PDL-derived EPC-like cells into myofibroblasts (MFs), which are known to expand fibrous tissues, require clarification. METHODS: Using specific mitogen activated protein kinase (MAPK) inhibitors, we examined how epidermal growth factor (EGF)-mediated MAPK signals affected the proliferation, migration, and MF differentiation of these cells. RESULTS: EGF induced SCDC2 cell proliferation in MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)- and c-Jun N-terminal kinase (JNK)-dependent manners. In addition, EGF suppressed the expression of MF differentiation markers in these cells in a MEK/ERK-dependent manner, and, moreover, stimulated the cell migration in a MEK/ERK-dependent manner. CONCLUSION: EGF regulates fibrous tissue remodeling in PDLs through MEK/ERK- and JNK-mediated signals by affecting the proliferation, migration, and MF differentiation of the PDL-derived EPC-like cells.


Assuntos
Células Endoteliais/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ligamento Periodontal/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , Imunofluorescência , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Ratos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
J Oral Pathol Med ; 42(2): 133-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22672247

RESUMO

BACKGROUND: The product of the Wilms' tumor gene, WT1 protein, is a tumor antigen for various kinds of cancer, and WT1 peptide-based cancer immunotherapy is widely anticipated as a new possibility for cancer treatment. The aim of this study was to investigate the expression of WT1 from quantitative and morphological perspectives in oral squamous cell carcinoma (OSCC), the most widespread malignant neoplasm of the oral cavity. METHODS: Six OSCC cell lines and tissue sections from 29 OSCC patients were analyzed. To detect WT1 expression, reverse transcription-polymerase chain reaction analysis (RT-PCR), real-time PCR, Western blots, and immunofluorescence flow cytometry for WT1 were performed on the cell lines, and immunohistochemistry and fluorescence in situ hybridization (FISH) were performed on the tissue sections. RESULTS: WT1 mRNA was found overexpressed in one of the six OSCC cell lines, with expression levels higher than that seen in human leukemia cell line (K562). Immunohistochemical analysis of tissue sections showed overexpression of WT1 protein in two patients, concentrated mainly in the cytoplasm of the outer one to three cell layers of the cancer nests. This was consistent with the expression of WT1 mRNA observed by FISH. Meanwhile, WT1 was not detected on normal oral epithelium. WT1 protein was detected on actively proliferating cancer nests and even on elongated epithelial ridge where new droplet-cancer-nests were being formed and starting infiltration toward subepithelial layer. CONCLUSIONS: The results suggest that WT1 plays an important role in the pathogenesis of some types of OSCC, particularly in proliferation of the cancer cells.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Proteínas WT1/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Separação Celular , Citoplasma/patologia , Epitélio/patologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Invasividade Neoplásica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Oral Biosci ; 65(1): 97-103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584898

RESUMO

OBJECTIVES: Temporomandibular joint osteoarthritis (TMJ-OA) is a multifactorial disease caused by inflammation and oxidative stress. It has been hypothesized that mechanical stress-induced injury of TMJ tissues induces the generation of reactive oxygen species (ROS), such as hydroxyl radical (OH∙), in the synovial fluid (SF). In general, the overproduction of ROS contributes to synovial inflammation and dysfunction of the subchondral bone in OA. However, the mechanism by which ROS-injured synoviocytes recruit inflammatory cells to TMJ-OA lesions remains unclear. METHODS: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the mRNA expression of chemoattractant molecules. The phosphorylation levels of intracellular signaling molecules were evaluated using western blot analysis. RESULTS: Hydrogen peroxide (H2O2) treatment significantly promoted mRNA expression of neutrophil chemoattractant CXCL15/Lungkine in a dose-dependent manner (100-500 µM) in fibroblast-like synoviocytes (FLSs) derived from mouse TMJ. H2O2 (500 µM) significantly upregulated the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 in FLSs. Intriguingly, the mitogen-activated protein (MAP)/ERK kinase (MEK) inhibitor U0126 (10 µM) nullified H2O2-induced increase in CXCL15/Lungkine mRNA expression. Additionally, H2O2 (500 µM) administration significantly upregulated OH∙ production in FLSs, as assessed by live-cell permeant fluorescent probe targeted against OH∙ under fluorescence microscopy. Furthermore, the ROS inhibitor N-acetyl-l-cysteine (5 mM) partially but significantly reversed H2O2-mediated phosphorylation of ERK1/2. CONCLUSIONS: H2O2-induced oxidative stress promoted the expression of CXCL15/Lungkine mRNA in a MEK/ERK-dependent manner in mouse TMJ-derived FLSs, suggesting that FLSs recruit neutrophils to TMJ-OA lesions through the production of CXCL15/Lungkine and exacerbate the local inflammatory response.


Assuntos
Osteoartrite , Sinoviócitos , Animais , Camundongos , Fatores Quimiotáticos/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Peróxido de Hidrogênio/efeitos adversos , Peróxido de Hidrogênio/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia
9.
J Biol Chem ; 286(11): 8952-60, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21239499

RESUMO

The contribution of plasminogen (Plg)/plasmin, which have claimed to be the main fibrinolytic regulators in the bone metabolism, remains unclear. This study evaluated how the absence of Plg affects the function of osteoblast (OB) and osteoclast (OC). There was a larger population of pre-OCs in bone marrow-derived cells from the Plg(-/-) mice than the population of that from the WT mice. In addition, the absence of Plg suppressed the expression of osteoprotegerin in OBs. Moreover, an exogenous plasmin clearly induced the osteoprotegerin expression in Plg(-/-) OBs. The osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells in co-culture with OBs from the Plg(-/-) mice was significantly accelerated in comparison with that in co-culture with OBs from the WT mice. Intriguingly, the accelerated OC differentiation of RAW264.7 cells co-cultured with Plg(-/-) OBs was clearly suppressed by the treatment of an exogenous plasmin. Consequently, Plg(-/-) mice display decreased bone mineral density. These findings could eventually lead to the development of new clinical therapies for bone disease caused by a disorder of the fibrinolytic system.


Assuntos
Densidade Óssea/fisiologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Fibrinolisina/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Plasminogênio/metabolismo , Animais , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Linhagem Celular , Fibrinolisina/genética , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoclastos/citologia , Plasminogênio/genética
10.
Cell Biol Int ; 35(5): 475-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21073443

RESUMO

MSCs (mesenchymal stem cells) migrate into damaged tissue and then proliferate and differentiate into various cell lineages to regenerate bone, cartilage, fat and muscle. Cell-cell adhesion of MSCs is essential for the MSC-dependent tissue regeneration after their homing into a damaged tissue. However, it remains to be elucidated what kinds of adhesion molecules play important roles in the cell-cell communication between MSCs. In order to identify adhesion molecules that facilitate mutual contact between MSCs, a comprehensive analysis of mRNA expression in adhesion molecules was performed by comparing profiles of expression status of adhesion molecules in MSCs at low- and high-cell density. We found that the expression level of VCAM1 (vascular cell adhesion molecule-1)/CD106 was clearly up-regulated in the human bone marrow-derived MSCs-UE7T-13 cells - under a condition of high cell density. Intriguingly, the migratory ability of the cells was clearly accelerated by a knockdown of VCAM1. Furthermore, the migratory ability of UE7T-13 cells was decreased by the over expression of exogenous VCAM1. In addition, the high cell density-induced expression of VCAM1 was clearly suppressed by NF-κB (nuclear factor-κB) signalling-related protein kinase inhibitors such as an IKK-2 (IκB kinase-2) inhibitor VI. In conclusion, the high cell density-induced VCAM1 expression through the NF-κB pathway inhibits the migratory ability of human bone marrow-derived MSCs.


Assuntos
Movimento Celular , Células-Tronco Mesenquimais/citologia , Molécula 1 de Adesão de Célula Vascular/genética , Adesão Celular , Contagem de Células , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Biometals ; 24(5): 847-56, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21404021

RESUMO

Lactoferrin (LF) belongs to the transferrin family and is present in several physiological fluids, including milk and colostrum. LF has recently been identified as an anabolic factor for bone. Here we investigated whether bovine LF (bLF) induces synthesis of angiogenic factors by osteoblasts. If so, we examined the underlying mechanism. We found that bLF purified from milk increased the mRNA expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF2) in murine osteoblast-like MC3T3-E1 cells and primary murine osteoblasts in a time- and dose-dependent manner. Furthermore, bLF increased VEGF and FGF2 protein levels in MC3T3-E1 cells. In addition, treatment of MC3T3-E1 cells with bLF rapidly induced phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase. The bLF-mediated increases in VEGF and FGF2 mRNA and protein were inhibited by U0126, a specific inhibitor of the upstream kinase that activates p44/p42 MAP kinase (MEK). Taken together, our results strongly suggest that bLF induces VEGF and FGF2 synthesis in a p44/p42 MAP kinase-dependent manner in MC3T3-E1 cells.


Assuntos
Fator 2 de Crescimento de Fibroblastos/biossíntese , Lactoferrina/farmacologia , Leite/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteoblastos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Butadienos/farmacologia , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/genética , Lactoferrina/isolamento & purificação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Nitrilas/farmacologia , Osteoblastos/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/genética
12.
J Vasc Res ; 47(5): 369-83, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20110728

RESUMO

OBJECTIVE: To evaluate whether fibroblasts derived from periodontal ligament retain the ability to differentiate into putative vascular cells and construct vascular cell-specific marker-positive blood vessel structures. We also evaluated the morphological features of the structure and investigated the intracellular molecular mechanism underlying the angiogenic activity of these cells. METHODS: Single cell-derived cultures (SCDCs) were established from primary rat ligament fibroblast cultures, and their expression of ligament cell-, mesenchymal stem cell- and vascular cell-specific markers was evaluated by RT-PCR and immunocytochemistry. The ability of the cells to construct a blood vessel structure was evaluated in a three-dimensional type I collagen scaffold. The morphological and immunohistological characteristics of the structure were then evaluated. RESULTS: Each SCDC expressed endothelial cell (EC)-specific and smooth muscle cell-specific markers, in addition to mesenchymal stem cell- and ligament cell-specific markers. SCDC2 cells, which abundantly expressed the EC markers Flk-1 and Tie-2, vigorously constructed a blood vessel structure in a phosphoinositide 3-kinase activation-dependent manner. CONCLUSION: Periodontal ligament fibroblasts have the potential to construct an EC marker-positive blood vessel-like structure. Consequently, the fibroblastic lineage in ligament tissue could be a candidate precursor for construction of a vascular system around damaged ligament tissue to facilitate its regeneration.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Transdiferenciação Celular , Fibroblastos/fisiologia , Ligamento Periodontal/citologia , Animais , Linhagem da Célula , Células Cultivadas , Fibroblastos/citologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Ratos , Ratos Wistar , Receptor TIE-2/biossíntese , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
13.
Oncol Lett ; 20(1): 474-482, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565972

RESUMO

Squamous cell carcinoma (SCC) is the most frequent cancer that develops in the oral cavity. Epithelial-mesenchymal transition (EMT) is known to play an important role in the process of metastasis of SCC cells. In our previous study, we demonstrated that TGF-ß1 induced EMT in the human oral SCC (hOSCC) cell line HSC-4. We also found that Slug plays an important role in suppressing E-cadherin expression and promotion of the migratory activity of HSC-4 cells. However, we also demonstrated that Slug does not participate in upregulation of N-cadherin expression, suggesting that EMT-related transcription factors other than Slug also play an important role in the process. In the present study, we aimed to elucidate how the transcription factor Sox9 affects the TGF-ß1-induced upregulation of N-cadherin expression in HSC-4 cells. We found that TGF-ß1 upregulated Sox9 expression in HSC-4 cells. In addition, Sox9 siRNA significantly abrogated the TGF-ß1-induced upregulation of N-cadherin expression and inhibited the TGF-ß1-promoted migratory activity in HSC-4 cells. We also demonstrated that TGF-ß1 upregulated the phosphorylation status of Sox9 and then promoted nuclear translocation of Sox9 from the cytoplasm, possibly resulting in an increase in N-cadherin expression. The cyclic AMP-dependent protein kinase A inhibitor H-89, which is known to suppress phosphorylation of Sox9, significantly abrogated the TGF-ß1-induced upregulation of N-cadherin expression. These results suggested that TGF-ß1 induced N-cadherin expression by upregulating Sox9 expression and promoting its nuclear translocation, which results in EMT progression in hOSCC cells.

14.
Bone ; 141: 115560, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32730924

RESUMO

Denosumab-related osteonecrosis of the jaw (DRONJ), which mainly occurs in cancer patients receiving anti-receptor activator NF-kappaB ligand (RANKL) antibody, reduces oral health-related quality of life. However, the exact mechanisms of and definitive treatment strategies for DRONJ remain unknown. We hypothesized that cessation of denosumab heals and/or ameliorates DRONJ, since it is a protein-based antibody agent, although stopping denosumab should be avoided in clinical situations. Therefore, the aims of this study were: 1) to create a healing and/or amelioration murine model of DRONJ-like lesions induced by chemotherapy/anti-RANKL antibody (mAb) combination therapy and tooth extraction; and 2) to investigate histopathology and immunopathology in the extraction sockets by comparing the murine model of DRONJ-like lesions with the amelioration/healing model of DRONJ-like lesions. Eight-week-old, female C57B/6J mice received chemotherapeutic drug (cyclophosphamide: CY) and mAb combination therapy (CY/mAb) with tooth extraction. Open wounds were sustained in CY/mAb-treated mice at 2 and 4 weeks post-extraction. Impaired socket healing was diagnosed as CY/mAb-related ONJ-like lesions at 3 weeks post-extraction in this study. Next, mAb was discontinued for 2 and 4 weeks after diagnosis of CY/mAb-related ONJ-like lesions. mAb cessation for 2 weeks induced partial osseous wound healing and significantly improved soft tissue wound healing of the extraction sockets. Anti-angiogenesis and normal lymphangiogenesis with CY/mAb combination therapy was not changed by mAb discontinuation. However, mAb cessation for 2 weeks significantly increased the number of CD38+F4/80+ M1 and CD163+F4/80+ M2 macrophages, which significantly increased the M2/M1 ratio in the connective tissue of extraction sockets. No direct effects of mAb on macrophages were noted both in vivo and in vitro. Therefore, the developed healing and/or amelioration murine model of CY/mAb-related ONJ-like lesions is a useful tool to investigate the histopathology and immunopathology of DRONJ in humans. Dynamic polarization shifting from M1 to M2 macrophages induced by mAb cessation may play an important role in wound healing, rather than angiogenesis and lymphangiogenesis, in DRONJ.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Polaridade Celular , Denosumab/farmacologia , Macrófagos/citologia , Animais , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Ligante RANK/antagonistas & inibidores
15.
Bone ; 135: 115308, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142911

RESUMO

There is limited information about denosumab-related osteonecrosis of the jaw (DRONJ), unlike bisphosphonate-related ONJ (BRONJ). The mode of action is clearly different between denosumab and bisphosphonates. DRONJ occurs mainly following tooth extraction in cancer patients treated with the combination of denosumab and other drugs including chemotherapy. However, DRONJ animal models similar to these clinical situations have not been developed. The aims of this study were to 1) create a new model of high-prevalence chemotherapy/anti-RANKL antibody-related ONJ-like lesions to mimic patients receiving a denosumab/chemotherapy combination; and 2) compare the histopathological and immunopathological findings in the early stages of BRONJ-like and anti-RANKL antibody-related ONJ-like lesions. Cyclophosphamide (CY) and anti-mouse RANKL monoclonal antibody (mAb) or zoledronate combination therapy (CY/mAb and CY/ZA, respectively) was performed to create ONJ-like lesions in female C57BL/6J mice. Both maxillary first molars were extracted at 3 weeks after drug administration. The animals were euthanized at either 2 or 4 weeks after tooth extraction. Increased necrotic bone and empty lacunae with decreased living bone and osteocyte numbers were common histopathological findings in CY/mAb- and CY/ZA-induced impaired wound healing at 4 weeks after tooth extraction, and they were diagnosed as ONJ-like lesions based on validation of BRONJ and DRONJ in humans. In areas of impaired healing at 2 weeks post-extraction, decreases in angiogenesis and F4/80+LYVE-1- macrophages were noted as common immunopathological findings, although anti-angiogenesis was worse with CY/mAb than with CY/ZA. Interestingly, CY/mAb did not reduce F4/80+LYVE-1+ cells and normal lymphangiogenesis remained, whereas CY/ZA profoundly suppressed the larger size of F4/80+LYVE-1+ cells, similar to vessels with a concomitant decrease in lymphangiogenesis. Therefore, the distribution of the larger size of F4/80+LYVE-1+ cells differed in the early stages between different antiresorptive-induced ONJ-like lesions in conjunction with lymphangiogenesis, although the histopathological findings were similar. These findings suggest that the pathogenesis of BRONJ and DRONJ may differ due to the distributions of F4/80+LYVE-1+ tube-like-structured cells.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Conservadores da Densidade Óssea/uso terapêutico , Ciclofosfamida , Denosumab/uso terapêutico , Difosfonatos/efeitos adversos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Zoledrônico
16.
Exp Ther Med ; 20(3): 1967-1974, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32782506

RESUMO

Osteoarthritis (OA)-related fibrosis is a possible cause of temporomandibular joint (TMJ) stiffness. However, the molecular mechanisms underlying the fibrogenic activity in fibroblast-like synoviocytes (FLSs) remain to be clarified. The present study examined the effects of receptor tyrosine kinase (RTK) ligands, such as fibroblast growth factor (FGF)-1 and epidermal growth factor (EGF), on myofibroblastic differentiation of the FLS cell line FLS1, which is derived from the mouse TMJ. The present study revealed that both FGF-1 and EGF dose-dependently suppressed the expression of the myofibroblast (MF) markers, including α-smooth muscle actin (α-SMA) and type I collagen, in FLS1 cells. Additionally, both FGF-1 and EGF activated extracellular signal-regulated kinase (ERK) in FLS1 cells. In addition, the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor U0126 abrogated the FGF-1- and EGF-mediated suppression of MF marker expression. On the other hand, inflammatory cytokines, such as interleukin-1ß and tumor necrosis factor-α, also suppressed the expression of MF markers in FLS1 cells. Importantly, U0126 abrogated the inflammatory cytokine-mediated suppression of MF marker expression. Interestingly, RTK ligands and inflammatory cytokines additively suppressed the expression of type I collagen. These results suggested that RTK ligands and inflammatory cytokines cooperatively inhibited the fibrogenic activity in FLSs derived from the TMJ in a MEK/ERK-dependent manner. The present findings partially clarify the molecular mechanisms underlying the development of OA-related fibrosis in the TMJ and may aid in identifying therapeutic targets for this condition. Additionally, FGF-1 and EGF could be therapeutically utilized to prevent OA-related fibrosis around the inflammatory TMJ.

17.
Jpn Dent Sci Rev ; 54(1): 37-44, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29629000

RESUMO

Mesenchymal stem cells (MSCs) retain the ability to self-renew and differentiate into mesenchymal cells. Therefore, human MSCs are suitable candidates for use in regenerative medicine and cell therapies. Upon activation by tissue damage, MSCs contribute to tissue repair through a multitude of processes such as self-renewal, migration, and differentiation. However, loss of self-renewal and multi-lineage differentiation potential occurs at a high rate during cell doubling. Effective MSC therapies require the establishment of new techniques that preserve MSC multipotency after lengthy cell expansions. Here, two novel mechanisms are described for maintenance of stemness in MSCs via scrapie responsive gene 1 (SCRG1)/bone marrow stromal cell antigen-1 (BST1) ligand-receptor combination and cell-cell adhesion through N-cadherin. These two mechanisms findings provide a valuable tool for regenerative medicine and cell therapeutic methods that require the ex vivo expansion of human MSCs while maintaining native stem cell potential.

18.
Biosci Rep ; 38(2)2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29535277

RESUMO

Many inflammatory cells are known to be home to inflamed temporomandibular joint (TMJ) tissues by stimulation with cytokines and chemokines produced by inflammatory lesions in the TMJ. However, how the inflammatory cells affect the progression of inflammation in TMJ synovial tissues after their homing to inflamed TMJ site is still uncertain. Here, we isolated and cultured TMJ synoviocyte-like cells (TMJSCs) from murine TMJ tissues. We demonstrated that interleukin 1ß (IL-1ß) up-regulated expression of monocyte chemoattractant protein 1 (MCP-1) in TMJSCs. In addition, we found that IL-1ß-treated TMJSCs strongly promoted migratory activity of mouse monocyte/macrophage RAW264.7 cells through secretion of MCP-1. On the other hand, IL-1ß up-regulated expression levels of intracellular adhesion molecule 1 (ICAM-1), a leukocyte adhesion ligand in TMJSCs. In addition, IL-1ß promoted cell-cell adhesion between TMJSCs and RAW264.7 cells. Intriguingly, we also found that cell-cell interactions mediated through soluble factors other than IL-1ß and cell-cell adhesion molecules between IL-1ß-stimulated TMJSCs and RAW264.7 cells synergistically augmented secretion of MCP-1 from these cells. Therefore, these results suggested that the IL-1ß-induced recruitment of monocyte/macrophage lineage cells to inflamed synovial membranes in TMJ was further augmented by the cell-cell interaction-induced secretion of MCP-1 from the inflammation site, possibly resulting in prolonged inflammatory responses in TMJ synovial tissue.


Assuntos
Comunicação Celular/imunologia , Quimiocina CCL2/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Sinoviócitos/imunologia , Articulação Temporomandibular/imunologia , Animais , Inflamação/imunologia , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Células RAW 264.7 , Sinoviócitos/patologia , Articulação Temporomandibular/patologia
19.
Mol Med Rep ; 17(3): 3448-3454, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29257332

RESUMO

Surface pre-reacted glass­ionomer (S­PRG)-containing dental materials, including composite and coating resins have been used for the restoration and/or prevention of dental cavities. S­PRG is known to have the ability to release aluminum, boron, fluorine, silicon, and strontium ions. Aluminum ions are known to be inhibitors whereas boron, fluorine, silicon, and strontium ions are known to be promoters of mineralization, via osteoblasts. However, it remains to be clarified how an aqueous eluate obtained from S­PRG containing these ions affects the ability of mesenchymal stem cells (MSCs), which are known to be present in dental pulp and bone marrow, to differentiate into osteogenic cell types. The present study demonstrated that 200­ to 1,000­fold­diluted aqueous eluates obtained from S­PRG significantly upregulated the mRNA expression level of the osteogenic differentiation marker alkaline phosphatase in human MSCs (hMSCs) without exhibiting the cytotoxic effect. In addition, the 500­ to 1,000­fold­diluted aqueous eluates obtained from S­PRG significantly and clearly promoted mineralization of the extracellular matrix of hMSCs. It was additionally demonstrated that hMSCs cultured on the cured resin composites containing S­PRG fillers exhibited osteogenic differentiation in direct correlation with the weight percent of S­PRG fillers. These results strongly suggested that aqueous eluates of S­PRG fillers promoted hard tissue formation by hMSCs, implicating that resins containing S­PRG may act as a useful biomaterial to cover accidental exposure of dental pulp.


Assuntos
Resinas Acrílicas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dióxido de Silício/farmacologia , Resinas Acrílicas/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Dentários/química , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , RNA Mensageiro/metabolismo , Dióxido de Silício/química , Regulação para Cima/efeitos dos fármacos , Água/química
20.
Int J Mol Med ; 42(3): 1484-1494, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29901090

RESUMO

Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro­inflammatory cytokines, including interleukin 1ß (IL­1ß) and tumor necrosis factor α (TNF­α), on transforming growth factor ß1 (TGF­ß1)­induced NGF expression was evaluated in rat PDL­derived SCDC2 cells. It was observed that TGF­ß1 promoted NGF expression via Smad2/3 and p38 mitogen­activated protein kinase (MAPK) activation. IL­1ß and TNF­α suppressed the TGF­ß1­induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF­ß1­treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate­limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro­inflammatory cytokines suppressed the TGF­ß­mediated expression of NGF in PDL­derived fibroblasts through the inactivation of TGF­ß­induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.


Assuntos
Fibroblastos/metabolismo , Interleucina-1beta/farmacologia , Fator de Crescimento Neural/metabolismo , Ligamento Periodontal/citologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Fibroblastos/efeitos dos fármacos , Humanos , Fator de Crescimento Neural/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Células PC12 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA