Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826408

RESUMO

Magnetic resonance angiography (MRA) performed at ultra-high magnetic field provides a unique opportunity to study the arteries of the living human brain at the mesoscopic level. From this, we can gain new insights into the brain's blood supply and vascular disease affecting small vessels. However, for quantitative characterization and precise representation of human angioarchitecture to, for example, inform blood-flow simulations, detailed segmentations of the smallest vessels are required. Given the success of deep learning-based methods in many segmentation tasks, we here explore their application to high-resolution MRA data, and address the difficulty of obtaining large data sets of correctly and comprehensively labelled data. We introduce VesselBoost, a vessel segmentation package, which utilizes deep learning and imperfect training labels for accurate vasculature segmentation. Combined with an innovative data augmentation technique, which leverages the resemblance of vascular structures, VesselBoost enables detailed vascular segmentations.

2.
Res Sq ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168287

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder requiring accurate and early diagnosis for effective treatment. Resting-state functional magnetic resonance imaging (rs-fMRI) and gray matter volume analysis from structural MRI have emerged as valuable tools for investigating AD-related brain alterations. However, the potential benefits of integrating these modalities using deep learning techniques remain unexplored. In this study, we propose a novel framework that fuses composite images of multiple rs-fMRI networks (called voxelwise intensity projection) and gray matter segmentation images through a deep learning approach for improved AD classification. We demonstrate the superiority of fMRI networks over commonly used metrics such as amplitude of low-frequency fluctuations (ALFF) and fractional ALFF in capturing spatial maps critical for AD classification. We use a multi-channel convolutional neural network incorporating the AlexNet dropout architecture to effectively model spatial and temporal dependencies in the integrated data. Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset of AD patients and cognitively normal (CN) validate the efficacy of our approach, showcasing improved classification performance of 94.12% test accuracy and an area under the curve (AUC) score of 97.79 compared to existing methods. Our results show that the fusion results generally outperformed the unimodal results. The saliency visualizations also show significant differences in the hippocampus, amygdala, putamen, caudate nucleus, and regions of basal ganglia which are in line with the previous neurobiological literature. Our research offers a novel method to enhance our grasp of AD pathology. By integrating data from various functional networks with structural MRI insights, we significantly improve diagnostic accuracy. This accuracy is further boosted by the effective visualization of this combined information. This lays the groundwork for further studies focused on providing a more accurate and personalized approach to AD diagnosis. The proposed framework and insights gained from fMRI networks provide a promising avenue for future research in deep multimodal fusion and neuroimaging analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA