Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomacromolecules ; 25(2): 1084-1095, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38289249

RESUMO

Benzaldehyde-conjugated chitosan (CH-CBA) was synthesized by a coupling reaction between chitosan (CH) and carboxybenzaldehyde (CBA). The pH-sensitive self-cross-linking can be achieved through the Schiff base reaction. The degree of substitution (DS) of CH-CBA was controlled at 1.4-12.7% by optimizing the pH and reagent stoichiometry. The dynamic Schiff base linkages conferred strong shear-thinning and self-healing properties to the hydrogels. The viscosity of the 2 wt/v % CH-CBA hydrogel decreased from 5.3 × 107 mPa·s at a shear rate of 10-2 s-1 to 2.0 × 103 mPa·s at 102 s-1 at pH 7.4. The CH-CBA hydrogel exhibited excellent biocompatibility in vitro and in vivo. Moreover, the hydrogel adhered strongly to porcine small intestine, colon, and cecum samples, comparable to commercial fibrin glue, and exhibited effective in vivo tissue sealing in a mouse cecal ligation and puncture model, highlighting its potential as a biomaterial for application in tissue adhesives, tissue engineering scaffolds, etc.


Assuntos
Quitosana , Adesivos Teciduais , Camundongos , Animais , Suínos , Quitosana/química , Adesivos Teciduais/química , Benzaldeídos , Hidrogéis/química , Bases de Schiff/química , Camundongos Endogâmicos CBA
2.
Biomacromolecules ; 25(3): 1790-1799, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38306215

RESUMO

Injectable ECM-inspired hydrogels composed of hyaluronic acid and gelatin are biocompatible and potentially useful for various medical applications. We developed injectable hydrogels composed of monoaldehyde-modified hyaluronic acid (HA-mCHO) and carbohydrazide-modified gelatin (GL-CDH), "HA/GL gel", whose ratios of HA-mCHO to GL-CDH were different. The hydrogels exhibited gelation times shorter than 3 s. In addition, the hydrogels showed strong shear-thinning and self-healing properties, mainly because of the dynamic covalent bonding of Schiff bases between HA-mCHO and GL-CDH. This hydrogel degraded in the mice's peritoneum for a week and showed excellent biocompatibility. Moreover, the hydrogel showed a higher breaking strength than fibrin glue in the lap shear test of porcine skin. Finally, the hydrogels decreased bleeding to as low as fibrin glue without using thrombin and fibrinogen in a mouse liver bleeding model in both single- and double-barreled syringe administrations. HA/GL gels have the potential for excellent biocompatibility and hemostasis in clinical settings.


Assuntos
Hemostáticos , Camundongos , Animais , Suínos , Hemostáticos/farmacologia , Gelatina , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Adesivo Tecidual de Fibrina , Hemostasia
3.
ACS Biomater Sci Eng ; 10(5): 3343-3354, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38695560

RESUMO

Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.


Assuntos
Hidrogéis , Polietilenoglicóis , Compostos de Sulfidrila , Hidrogéis/química , Hidrogéis/farmacologia , Polietilenoglicóis/química , Animais , Camundongos , Compostos de Sulfidrila/química , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Suínos , Reagentes de Ligações Cruzadas/química , Reologia , Humanos , Resinas Acrílicas
4.
Mol Cancer Res ; 22(4): 373-385, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236913

RESUMO

Breast cancer ranks first in incidence and fifth in cancer-related deaths among all types of cancer globally. Among breast cancer, triple-negative breast cancer (TNBC) has few known therapeutic targets and a poor prognosis. Therefore, new therapeutic targets and strategies against TNBC are required. We found that androgen-induced basic leucine zipper (AIbZIP), also known as cyclic AMP-responsive element-binding protein 3-like protein 4 (CREB3L4), which is encoded by Creb3l4, is highly upregulated in a particular subtype of TNBC, luminal androgen receptor (LAR) subtype. We analyzed the function of AIbZIP through depletion of AIbZIP by siRNA knockdown in LAR subtype TNBC cell lines, MFM223 and MDAMB453. In AIbZIP-depleted cells, the proliferation ratios of cells were greatly suppressed. Moreover, G1-S transition was inhibited in AIbZIP-depleted cells. We comprehensively analyzed the expression levels of proteins that regulate G1-S transition and found that p27 was specifically upregulated in AIbZIP-depleted cells. Furthermore, we identified that this p27 downregulation was caused by protein degradation modulated by the ubiquitin-proteasome system via F-box protein S-phase kinase-associated protein 2 (SKP2) upregulation. Our findings demonstrate that AIbZIP is a novel p27-SKP2 pathway-regulating factor and a potential molecule that contributes to LAR subtype TNBC progression. IMPLICATIONS: This research shows a new mechanism for the proliferation of LAR subtype TNBC regulated by AIbZIP, that may provide novel insight into the LAR subtype TNBC progression and the molecular mechanisms involved in cell proliferation.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Receptores Androgênicos/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Regulação para Cima
5.
ACS Appl Bio Mater ; 7(7): 4679-4689, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963794

RESUMO

Postoperative peritoneal adhesion (PPA) is a prevalent complication of abdominal surgery, posing a significant hindrance to postsurgical recovery. Although several strategies have been developed to alleviate and prevent adhesions, their efficacy remains unsatisfactory. For the first time, we studied the therapeutic effect and mechanism of our recently developed thermally stable oligonucleotide-based mimetics of hepatocyte growth factor (HGF DNA aptamer) to prevent PPA. The HGF DNA aptamer effectively inhibited canonical TGF-ß1 signaling transduction, partially suppressing mesothelial mesenchymal transition. Additionally, the aptamer, respectively, upregulated and downregulated the expression of tissue plasminogen activator and plasminogen activator inhibitor 1, thereby enhancing fibrinolytic activity. As a pleiotropic factor, the HGF DNA aptamer also enhanced the migratory and proliferative capacities of mesothelial cells. Finally, the aptamer demonstrated a higher level of effectiveness in preventing PPAs than the commercially available antiperitoneal adhesion barrier, Seprafilm. Due to its therapeutic benefits, excellent stability, biosafety, cost-effectiveness, and versatility, the HGF DNA aptamer demonstrates promise for preventing PPA in future clinical settings.


Assuntos
Aptâmeros de Nucleotídeos , Transição Epitelial-Mesenquimal , Fibrinólise , Fator de Crescimento de Hepatócito , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Aderências Teciduais/prevenção & controle , Humanos , Fibrinólise/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Tamanho da Partícula , Complicações Pós-Operatórias/prevenção & controle
6.
Biomater Sci ; 12(6): 1454-1464, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38223981

RESUMO

In the present study, we report the first synthesis of diazirine-modified hyaluronic acid (HA-DAZ). In addition, we also produced a precursor polymer solution composed of HA-DAZ and dendritic polyethyleneimine (DPI) that showed strong shear-thinning properties. Furthermore, its viscosity was strongly reduced (i.e., from 5 × 105 mPa s at 10-3 s-1 to 6 × 101 mPa s at 103 s-1), substantially, which enhanced solution injectability using a 21 G needle. After ultraviolet irradiation at 365 nm and 6 mW cm-2, the HA-DAZ/DPI solution achieved rapid gelation, as measured using the stirring method, and its gelation time decreased from 200 s to 9 s as the total concentrations of HA-DAZ and DPI increased. Following UV irradiation, the storage modulus increased from 40 to 200 Pa. In addition, reversible sol-gel transition and self-healing properties were observed even after UV irradiation. This suggests that the HA-DAZ/DPI hydrogel was crosslinked in multiple ways, i.e., via covalent bonding between the diazirine and amine groups and via intermolecular interactions, including hydrogen bonding, electrostatic interactions, and hydrophobic interactions. A lap shear test showed that the HA-DAZ/DPI hydrogel exhibited strong adhesiveness as a fibrin glue following UV irradiation. Finally, the HA-DAZ/DPI hydrogel showed higher tissue reinforcement than fibrin glue in an ex vivo burst pressure test of the porcine esophageal mucosa.


Assuntos
Adesivos Teciduais , Animais , Suínos , Ácido Hialurônico/química , Diazometano , Polietilenoimina , Hidrogéis/química , Adesivo Tecidual de Fibrina
7.
Artigo em Inglês | MEDLINE | ID: mdl-38533235

RESUMO

Antimicrobial-product package inserts and insufficient staffing impede routine carbapenem monitoring in the inpatient setting in Japan. The collaboration between antimicrobial stewardship teams and clinical pharmacists was associated with a sustained improvement in carbapenem dosing optimization. Our findings could be of use to countries with inadequate monitoring of carbapenem antimicrobial use.

8.
ACS Omega ; 9(19): 21127-21135, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764690

RESUMO

Red blood cell-inspired perfluorocarbon-encapsulated core-shell particles have been developed for biomedical applications. Although the use of perfluorodecalin (FDC) is expected for core-shell particles owing to its high oxygen solubility, the low solubility of FDC in any organic solvent, owing to its fluorous properties, prevents its use in core-shell particles. In this study, a new cosolvent system composed of dichloromethane (DCM) and heptafluoropropyl methyl ether (HFPME) was found to dissolve both FDC and fluorinated polyimide (FPI) based on a systematic study using a phase diagram, achieving a homogeneous disperse phase for emulsification composed of oxygen-permeable FPI and oxygen-soluble FDC. Using this novel cosolvent system and Shirasu porous glass (SPG) membrane emulsification, FDC-encapsulated FPI shell microparticles were successfully prepared for the first time. In addition to oxygenation, demonstrated using hypoxia-responsive HeLa cells, the fabricated core-shell microparticles exhibited monodispersity, excellent stability, biocompatibility, and oxygen capacity.

9.
Biomater Sci ; 12(17): 4354-4362, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38967234

RESUMO

Pancreatic islet transplantation is an effective treatment for type I diabetes mellitus. However, many problems associated with pancreatic islet engraftment remain unresolved. In this study, we developed a hydrogel microwell device for islet implantation, fabricated by crosslinking gelatin-methacryloyl (GelMA) and 2-hydroxyethyl methacrylate (HEMA) in appropriate proportions. The fabricated hydrogel microwell device could be freeze-dried and restored by immersion in the culture medium at any time, allowing long-term storage and transport of the device for ready-to-use applications. In addition, due to its non-swelling properties, the shape of the wells of the device was maintained. Thus, the device allowed pancreatic ß cell lines to form spheroids and increase insulin secretion. Intraperitoneal implantation of the ß cell line-seeded GelMA/HEMA hydrogel microwell device reduced blood glucose levels in diabetic mice. In addition, they were easy to handle during transplantation and were removed from the transplant site without peritoneal adhesions or infiltration by inflammatory cells. These results suggest that the GelMA/HEMA hydrogel microwell device can go from spheroid and/or organoid fabrication to transplantation in a single step.


Assuntos
Gelatina , Hidrogéis , Células Secretoras de Insulina , Metacrilatos , Animais , Camundongos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Metacrilatos/química , Hidrogéis/química , Gelatina/química , Esferoides Celulares , Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas , Glicemia/metabolismo , Glicemia/análise , Insulina/metabolismo , Poli-Hidroxietil Metacrilato/química , Diabetes Mellitus Tipo 1/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA