Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(8): 2821-2847, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37144857

RESUMO

The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema , Histonas/genética , Histonas/metabolismo , Flores/fisiologia , Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas/genética , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34462349

RESUMO

Floral organs are properly developed on the basis of timed floral meristem (FM) termination in Arabidopsis In this process, two known regulatory pathways are involved. The WUSCHEL (WUS)-CLAVATA3 (CLV3) feedback loop is vital for the spatial establishment and maintenance of the FM, while AGAMOUS (AG)-WUS transcriptional cascades temporally repress FM. At stage 6 of flower development, a C2H2-type zinc finger repressor that is a target of AG, KNUCKLES (KNU), directly represses the stem cell identity gene WUS in the organizing center for FM termination. However, how the robust FM activity is fully quenched within a limited time frame to secure carpel development is not fully understood. Here, we demonstrate that KNU directly binds to the CLV1 locus and the cis-regulatory element on CLV3 promoter and represses their expression during FM determinacy control. Furthermore, KNU physically interacts with WUS, and this interaction inhibits WUS from sustaining CLV3 in the central zone. The KNU-WUS interaction also interrupts the formation of WUS homodimers and WUS-HAIRYMERISTEM 1 heterodimers, both of which are required for FM maintenance. Overall, our findings describe a regulatory framework in which KNU plays a position-specific multifunctional role for the tightly controlled FM determinacy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Flores/metabolismo , Meristema/metabolismo , Flores/citologia , Proteínas de Homeodomínio/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
3.
Plant Cell Physiol ; 64(3): 284-290, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36331512

RESUMO

Shoot stem cells act as the source of the aboveground parts of flowering plants. A precise regulatory basis is required to ensure that plant stem cells show the right status during the stages of proliferation, senescence and cell death. Over the past few decades, the genetic circuits controlling stem cell fate, including the regulatory pathways of establishment, maintenance and differentiation, have been largely revealed. However, the morphological changes and molecular mechanisms of the final stages of stem cells, which are represented by senescence and cell death, have been less studied. The senescence and death of shoot stem cells are under the control of a complex series of pathways that integrate multiple internal and external signals. Given the crucial roles of shoot stem cells in influencing plant longevity and crop yields, researchers have attempted to uncover details of stem cell senescence and death. Recent studies indicate that stem cell activity arrest is controlled by the FRUITFULL-APETALA2 pathway and the plant hormones auxin and cytokinin, while the features of senescent and dead shoot apical stem cells have also been described, with dynamic changes in reactive oxygen species implicated in stem cell death. In this review, we highlight the recent breakthroughs that have enriched our understanding of senescence and cell death processes in plant stem cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Senescência Vegetal , Brotos de Planta , Células-Tronco , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Meristema/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Senescência Vegetal/genética , Senescência Vegetal/fisiologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Morte Celular Regulada/genética , Morte Celular Regulada/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia
4.
Plant Cell Physiol ; 64(2): 234-247, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440710

RESUMO

The glucosinolate-myrosinase defense system (GMDS), characteristic of Brassicales, is involved in plant defense. Previous single-cell transcriptomic analyses have reported the expression profiles of multiple GMDS-related cell types (i.e. myrosinase-rich myrosin idioblasts and multiple types of potential glucosinolate synthetic cells as well as a candidate S-cell for glucosinolate accumulation). However, differences in plant stages and cell-type annotation methods have hindered comparisons among studies. Here, we used the single-cell transcriptome profiles of extended Arabidopsis leaves and verified the distribution of previously used markers to refine the expression profiles of GMDS-associated cell types. Moreover, we performed beta-glucuronidase promoter assays to confirm the histological expression patterns of newly obtained markers for GMDS-associated candidates. As a result, we found a set of new specific reporters for myrosin cells and potential glucosinolate-producing cells.


Assuntos
Arabidopsis , Arabidopsis/genética , Glucosinolatos/metabolismo , Folhas de Planta/metabolismo , Glicosídeo Hidrolases/metabolismo , Glucuronidase/metabolismo , Plantas/metabolismo , Análise de Sequência de RNA
5.
Circ J ; 87(6): 791-798, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36740256

RESUMO

BACKGROUND: The saphenous vein (SV) is used as an essential conduit in coronary artery bypass grafting (CABG), but the long-term patency of SV grafts is a crucial issue. The use of the novel "no-touch" technique of harvesting the SV together with its surrounding tissue has been reported to result in good long-term graft patency of SV grafts. We recently showed that perivascular adipose tissue (PVAT) surrounding the SV (SV-PVAT) had lower levels of metaflammation and consecutive adipose tissue remodeling than did PVAT surrounding the coronary artery. However, the difference between SV-PVAT and subcutaneous adipose tissue (SCAT) remains unclear.Methods and Results: Fat pads were sampled from 55 patients (38 men, 17 women; mean [±SD] age 71±8 years) with coronary artery disease who underwent elective CABG. Adipocyte size was significantly larger in SV-PVAT than SCAT. The extent of fibrosis was smaller in SV-PVAT than SCAT. There were no significant differences between SCAT and SV-PVAT in macrophage infiltration area, quantified by antibodies for CD68, CD11c, and CD206, or in gene expression levels of metaflammation-related markers. Expression patterns of adipocyte developmental and pattern-forming genes differed between SCAT and SV-PVAT. CONCLUSIONS: The properties of SV-PVAT are close to, but not the same as, those of SCAT, possibly resulting from inherent differences in adipocytes. SV-PVAT has healthy expansion with less fibrosis in fat than SCAT.


Assuntos
Tecido Adiposo , Veia Safena , Feminino , Humanos , Veia Safena/transplante , Tecido Adiposo/metabolismo , Ponte de Artéria Coronária/métodos , Gordura Subcutânea , Fenótipo , Fibrose , Grau de Desobstrução Vascular
6.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686100

RESUMO

Heat stress (HS) is becoming an increasingly large problem for food security as global warming progresses. As sessile species, plants have evolved different mechanisms to cope with the disruption of cellular homeostasis, which can impede plant growth and development. Here, we summarize the mechanisms underlying transcriptional regulation mediated by transcription factors, epigenetic regulators, and regulatory RNAs in response to HS. Additionally, cellular activities for adaptation to HS are discussed, including maintenance of protein homeostasis through protein quality control machinery, and autophagy, as well as the regulation of ROS homeostasis via a ROS-scavenging system. Plant cells harmoniously regulate their activities to adapt to unfavorable environments. Lastly, we will discuss perspectives on future studies for improving urban agriculture by increasing crop resilience to HS.


Assuntos
Aclimatação , Agricultura , Espécies Reativas de Oxigênio , Autofagia , Resposta ao Choque Térmico/genética
7.
Plant J ; 106(2): 326-335, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533118

RESUMO

Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project 'Principles of pluripotent stem cells underlying plant vitality' was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.


Assuntos
Longevidade/fisiologia , Células Vegetais/fisiologia , Desenvolvimento Vegetal/fisiologia , Células-Tronco/fisiologia , Epigênese Genética , Reguladores de Crescimento de Plantas/fisiologia , Plantas , Pesquisa/tendências
8.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764982

RESUMO

Proper floral patterning, including the number and position of floral organs in most plant species, is tightly controlled by the precise regulation of the persistence and size of floral meristems (FMs). In Arabidopsis, two known feedback pathways, one composed of WUSCHEL (WUS) and CLAVATA3 (CLV3) and the other composed of AGAMOUS (AG) and WUS, spatially and temporally control floral stem cells, respectively. However, mounting evidence suggests that other factors, including phytohormones, are also involved in floral meristem regulation. Here, we show that the boundary gene SUPERMAN (SUP) bridges floral organogenesis and floral meristem determinacy in another pathway that involves auxin signaling. SUP interacts with components of polycomb repressive complex 2 (PRC2) and fine-tunes local auxin signaling by negatively regulating the expression of the auxin biosynthesis genes YUCCA1/4 (YUC1/4). In sup mutants, derepressed local YUC1/4 activity elevates auxin levels at the boundary between whorls 3 and 4, which leads to an increase in the number and the prolonged maintenance of floral stem cells, and consequently an increase in the number of reproductive organs. Our work presents a new floral meristem regulatory mechanism, in which SUP, a boundary gene, coordinates floral organogenesis and floral meristem size through fine-tuning auxin biosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Oxigenases de Função Mista/genética , Mutação , Fenótipo , Complexo Repressor Polycomb 2/genética , Células-Tronco/metabolismo
9.
BMC Plant Biol ; 22(1): 248, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590269

RESUMO

BACKGROUND: Leaf senescence, the final stage of leaf growth and development, is regulated by numerous internal factors and environmental cues. Ethylene is one of the key senescence related hormones, but the underlying molecular mechanism of ethylene-induced leaf senescence remains poorly understood. RESULTS: In this study, we identified one AT-hook like (AHL) protein, AHL9, as a positive regulator of leaf senescence in Arabidopsis thaliana. Overexpression of AHL9 significantly accelerates age-related leaf senescence and promotes dark-induced leaf chlorosis. The early senescence phenotype observed in AHL9 overexpressing lines is inhibited by the ethylene biosynthesis inhibitor aminooxyacetic acid suggesting the involvement of ethylene in the AHL9-associated senescence. RNA-seq and quantitative reverse transcription PCR (qRT-PCR) data identified numerous senescence-associated genes differentially expressed in leaves of AHL9 overexpressing transgenic plants. CONCLUSIONS: Our investigation demonstrates that AHL9 functions in accelerating the leaf senescence process via ethylene synthesis or signalling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Senescência Vegetal , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética
10.
Plant Cell ; 31(7): 1488-1505, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068455

RESUMO

Arabidopsis (Arabidopsis thaliana) floral meristems terminate after the carpel primordia arise. This is achieved through the temporal repression of WUSCHEL (WUS), which is essential for stem cell maintenance. At floral stage 6, WUS is repressed by KNUCKLES (KNU), a repressor directly activated by AGAMOUS. KNU was suggested to repress WUS through histone deacetylation; however, how the changes in the chromatin state of WUS are initiated and maintained to terminate the floral meristem remains elusive. Here, we show that KNU integrates initial transcriptional repression with polycomb-mediated stable silencing of WUS After KNU is induced, it binds to the WUS promoter and causes eviction of SPLAYED, which is a known activator of WUS and can oppose polycomb repression. KNU also physically interacts with FERTILIZATION-INDEPENDENT ENDOSPERM, a key polycomb repressive complex2 component, and mediates the subsequent deposition of the repressive histone H3 lysine 27 trimethylation for stable silencing of WUS This multi-step silencing of WUS leads to the termination of floral stem cells, ensuring proper carpel development. Thus, our work describes a detailed mechanism for heritable floral stem cell termination in a precise spatiotemporal manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Cromatina/metabolismo , Epigênese Genética , Epistasia Genética , Proteínas de Homeodomínio/genética , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/metabolismo , Transcrição Gênica
11.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409227

RESUMO

In monocarpic plants, stem cells are fated to die. However, the potential mechanism of stem cell death has remained elusive. Here, we reveal that the levels of two forms of reactive oxygen species (ROS), superoxide anion free radical (O2·-) and hydrogen peroxide (H2O2), show dynamic changes in the shoot apex during the plant life cycle of Arabidopsis thaliana. We found that the level of O2·- decreased and disappeared at four weeks after bolting (WAB), while H2O2 appeared at 3 WAB and showed a burst at 5 WAB. The timing of dynamic changes in O2·- and H2O2 was delayed for approximately three weeks in clv3-2, which has a longer lifespan. Moreover, exogenous application of H2O2 inhibited the expression of the stem cell determinant WUSCHEL (WUS) and promoted the expression of the developmentally programmed cell death (dPCD) marker gene ORESARA 1 (ORE1). These results indicate that H2O2 triggers an important signal inducing dPCD in stem cells. Given that O2·- plays roles in maintaining WUS expression and stem cell activity, we speculate that the dynamic shift from O2·- to H2O2 in the shoot apex results in stem cell death. Our findings provide novel insights for understanding ROS-mediated regulation during plant stem cell death.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo
12.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209661

RESUMO

Self-incompatibility (SI) is conserved among members of the Brassicaceae plant family. This trait is controlled epigenetically by the dominance hierarchy of the male determinant alleles. We previously demonstrated that a single small RNA (sRNA) gene is sufficient to control the linear dominance hierarchy in Brassica rapa and proposed a model in which a homology-based interaction between sRNAs and target sites controls the complicated dominance hierarchy of male SI determinants. In Arabidopsis halleri, male dominance hierarchy is reported to have arisen from multiple networks of sRNA target gains and losses. Despite these findings, it remains unknown whether the molecular mechanism underlying the dominance hierarchy is conserved among Brassicaceae. Here, we identified sRNAs and their target sites that can explain the linear dominance hierarchy of Arabidopsis lyrata, a species closely related to A. halleri. We tested the model that we established in Brassica to explain the linear dominance hierarchy in A. lyrata. Our results suggest that the dominance hierarchy of A. lyrata is also controlled by a homology-based interaction between sRNAs and their targets.


Assuntos
Arabidopsis/genética , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Genes Dominantes , Recombinação Homóloga , RNA de Plantas , Predomínio Social , Alelos , Genótipo , Haplótipos , Conformação de Ácido Nucleico
13.
Kyobu Geka ; 73(7): 523-528, 2020 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-32641672

RESUMO

We report the early results of our initial 20 consecutive robotic-assisted mitral valve repairs at our institution. A total of 20 patients (aged 55±10 years, 15 males) underwent robotic assisted mitral repairs by using da Vinci system. Successful mitral valve repairs were done in all cases. All patients received an annuloplasty band. Triangular resection were done in 2 cases and artificial chordae were used in 18 cases. There was no conversion to sternotomy intraoperatively. Three cases needed recross-clamping because of mitral regurgitation, mitral stenosis and the problem of venous canula. Cardiopulmonary bypass time and aortic cross-clamp time were 272±56 minutes, 153±41 minutes. There were no hospital mortality and major complications. Post-pump echocardiograms showed no/trivial mitral regurgitation in all cases. Robotic-assisted mitral valve repairs were done safely and the early results were acceptable in our series.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Insuficiência da Valva Mitral , Procedimentos Cirúrgicos Robóticos , Robótica , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Valva Mitral , Estudos Retrospectivos , Resultado do Tratamento
14.
Plant Cell Environ ; 42(7): 2198-2214, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30859592

RESUMO

After germination, seedlings undergo growth arrest in response to unfavourable conditions, a critical adaptation enabling plants to survive harsh environments. The plant hormone abscisic acid (ABA) plays a key role in this arrest. To arrest growth, ABA-dependent transcription factors change gene expression patterns in a flexible and reversible manner. Although the control of gene expression has important roles in growth arrest, the epigenetic mechanisms in the response to ABA are not fully understood. Here, we show that the histone demethylases JUMONJI-C domain-containing protein 30 (JMJ30) and JMJ32 control ABA-mediated growth arrest in Arabidopsis thaliana. During the postgermination stage (2-3 days after germination), the ABA-dependent transcription factor ABA-insensitive3 (ABI3) activates the expression of JMJ30 in response to ABA. JMJ30 then removes a repressive histone mark, H3 lysine 27 trimethylation (H3K27me3), from the SNF1-related protein kinase 2.8 (SnRK2.8) promoter, and hence activates SnRK2.8 expression. SnRK2.8 encodes a kinase that activates ABI3 and is responsible for JMJ30- and JMJ32-mediated growth arrest. A feed-forward loop involving the ABI3 transcription factor, JMJ histone demethylases, and the SnRK2.8 kinase fine-tunes ABA-dependent growth arrest in the postgermination phase. Our findings highlight the importance of the histone demethylases in mediating adaptation of plants to the environment.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Germinação/fisiologia , Histonas/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desmetilação , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Germinação/efeitos dos fármacos , Germinação/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Plântula , Fatores de Transcrição/metabolismo
15.
J Exp Bot ; 70(6): 1711-1718, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916342

RESUMO

Flowers have fascinated humans for millennia, not only because of their beauty, but also because they give rise to fruits, from which most agricultural products are derived. In most angiosperms, the number and position of floral organs are morphologically and genetically defined, and their development is tightly controlled by complex regulatory networks to ensure reproductive success. How flower development is temporally initiated and spatially maintained has been widely researched. As the flower develops, the balance between proliferation and differentiation dynamically shifts towards organogenesis and termination of floral stem cell maintenance. In this review, we focus on recent findings that further reveal the intricate molecular mechanisms for precise timing of floral meristem termination.


Assuntos
Flores/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Organogênese Vegetal
16.
J Card Surg ; 34(3): 143-146, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30742333

RESUMO

A 74-year-old man had undergone two-vessel coronary artery bypass grafting (CABG), 19 years ago, with the left internal mammary artery (LITA) to the left anterior descending artery and the saphenous vein graft (SVG) to the posterior descending artery. In outpatient care, a thoracic aortic aneurysm was suspected by the chest X-ray. In the computed tomography, appeared the distal arch aortic aneurysm, abdominal aortic aneurysm (AAA), and giant right coronary artery aneurysm (rCAA). The diameter of rCAA was 70 mm and it oppressed the right atrium and ventricle of the heart. The patient was referred to our hospital. After the initial treatment of distal arch aneurysm and AAA, surgical treatment for the rCAA was performed. The rCAA was resected completely and CABG with new SVG was performed without cardiopulmonary bypass. The histopathology of rCAA wall revealed that the etiology was an atherosclerotic change. The postoperative course was good, the oppressed right heart system was released and the hemodynamics of the tricuspid valve showed improvement.


Assuntos
Aneurisma Coronário/cirurgia , Ponte de Artéria Coronária/métodos , Vasos Coronários/cirurgia , Idoso , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Aneurisma Coronário/diagnóstico por imagem , Aneurisma Coronário/etiologia , Doença da Artéria Coronariana/complicações , Vasos Coronários/diagnóstico por imagem , Humanos , Masculino , Veia Safena/transplante , Tomografia Computadorizada por Raios X , Resultado do Tratamento
17.
Int J Mol Sci ; 20(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434317

RESUMO

Plants, unlike animals, have developed a unique system in which they continue to form organs throughout their entire life cycle, even after embryonic development. This is possible because plants possess a small group of pluripotent stem cells in their meristems. The shoot apical meristem (SAM) plays a key role in forming all of the aerial structures of plants, including floral meristems (FMs). The FMs subsequently give rise to the floral organs containing reproductive structures. Studies in the past few decades have revealed the importance of transcription factors and secreted peptides in meristem activity using the model plant Arabidopsis thaliana. Recent advances in genomic, transcriptomic, imaging, and modeling technologies have allowed us to explore the interplay between transcription factors, secreted peptides, and plant hormones. Two different classes of plant hormones, cytokinins and auxins, and their interaction are particularly important for controlling SAM and FM development. This review focuses on the current issues surrounding the crosstalk between the hormonal and genetic regulatory network during meristem self-renewal and organogenesis.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Meristema/citologia
18.
Transpl Infect Dis ; 20(4): e12922, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29797683

RESUMO

Fluconazole (FLCZ) is an azole antifungal agent and it has shown excellent clinical activities in suppressing fungemia with Candida albicans after hematopoietic stem cell transplantation. Increased administration of prophylactic FLCZ seems to have given rise to the relatively higher incidence of more resistant Candida non-albicans infection. We present a case with a rare breakthrough fungemia with C. guilliermondii after cord blood transplantation for Extranodal NK cell Lymphoma, nasal type (ENKL), during antifungal prophylaxis with FLCZ. High level of caution is needed for the breakthrough, especially after long-term azole administration.


Assuntos
Antibioticoprofilaxia/efeitos adversos , Antifúngicos/uso terapêutico , Candida/fisiologia , Candidemia/tratamento farmacológico , Candidíase Invasiva/tratamento farmacológico , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Linfoma Extranodal de Células T-NK/cirurgia , Complicações Infecciosas na Gravidez/tratamento farmacológico , Adulto , Candida/efeitos dos fármacos , Candida/isolamento & purificação , Candidemia/complicações , Candidemia/microbiologia , Candidemia/prevenção & controle , Candidíase Invasiva/complicações , Candidíase Invasiva/microbiologia , Candidíase Invasiva/prevenção & controle , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Feminino , Fluconazol/efeitos adversos , Humanos , Testes de Sensibilidade Microbiana , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/prevenção & controle , Natimorto , Adulto Jovem
19.
Angew Chem Int Ed Engl ; 57(34): 10873-10878, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29952110

RESUMO

Adenosine triphosphate (ATP) provides energy for the regulation of multiple cellular processes in living organisms. Capturing the spatiotemporal dynamics of ATP in single cells is fundamental to our understanding of the mechanisms underlying cellular energy metabolism. However, it has remained challenging to visualize the dynamics of ATP in and between distinct intracellular organelles and its interplay with other signaling molecules. Using single fluorescent proteins, multicolor ATP indicators were developed, enabling the simultaneous visualization of subcellular ATP dynamics in the cytoplasm and mitochondria of cells derived from mammals, plants, and worms. Furthermore, in combination with additional fluorescent indicators, the dynamic interplay of ATP, cAMP, and Ca2+ could be visualized in activated brown adipocyte. This set of indicator tools will facilitate future research into energy metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Cor , Análise de Célula Única , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Fluorescência , Glicólise , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa
20.
Blood ; 125(23): 3559-62, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25918345

RESUMO

We sought to clarify the role of high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (auto-HSCT) and allogeneic hematopoietic stem cell transplantation (allo-HSCT) to treat blastic plasmacytoid dendritic cell neoplasm (BPDCN). We retrospectively identified 25 BPDCN patients (allo-HSCT, n = 14; auto-HSCT, n = 11) from registry data of the Japan Society for Hematopoietic Cell Transplantation and analyzed clinicopathologic data and clinical outcomes after transplantation. The median age at HSCT was 58 years (range, 17-67 years). All 11 patients who underwent auto-HSCT were in the first complete remission (CR1). With a median follow-up of 53.5 months, the overall survival rates at 4 years for patients who underwent auto-HSCT and allo-HSCT were 82% and 53% (P = .11), respectively, and progression-free survival rates were 73% and 48% (P = .14), respectively. Auto-HSCT for BPDCN in CR1 appears to provide promising results and deserves further evaluation in the setting of prospective trials.


Assuntos
Células Dendríticas/patologia , Transplante de Células-Tronco Hematopoéticas , Plasmocitoma , Adolescente , Adulto , Idoso , Autoenxertos , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Plasmocitoma/mortalidade , Plasmocitoma/patologia , Plasmocitoma/terapia , Estudos Retrospectivos , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA