Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 1737-1748, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38163250

RESUMO

Aluminum solid polymer capacitors are promising devices for the increased demand for power electronics applications. Nonetheless, the low breakdown voltage of commercially available catalysts (∼100 V) limits their applications. In this study, a hydroxide-film-covered high-purity aluminum was anodized at 700 V in boric acid at 85 °C, and the effect of a second hot water immersion (posthydration treatment) after anodizing on the breakdown voltage was studied as a possible future treatment to enhance the withstand voltages of solid electrolytic capacitors. The dielectric breakdown voltage of the anodized aluminum with a PEDOT:PSS coating was ∼500 V, being ∼200 V less than the anodizing voltage; however, the dielectric breakdown voltage was increased above 700 V by introducing the posthydration treatment due to the formation of a nanovoid layer above the dielectric alumina film. Our research suggests that the highly dispersed nanovoids incorporated with PEDOT:PSS avoid the current concentration at some local regions, effectively increasing the dielectric breakdown voltage. The posthydration treatment increased the leakage current by introducing physical defects in the dielectric film. However, the leakage current was reduced by a voltage sweep below the breakdown voltage after the PEDOT:PSS coating or a second anodizing process before the coating, keeping the breakdown voltage above 600 V. A promising processing route to obtain aluminum solid capacitors with high withstand voltage (600 V) found in our research is, first, dipping in hot water; second, anodizing at 700 V; then a second hot water treatment; and a second anodizing at 400 V, which keeps the capacitance invariable with a breakdown voltage enhanced.

2.
Sci Rep ; 11(1): 7240, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790355

RESUMO

High-aspect ratio ordered nanomaterial arrays exhibit several unique physicochemical and optical properties. Porous anodic aluminum oxide (AAO) is one of the most typical ordered porous structures and can be easily fabricated by applying an electrochemical anodizing process to Al. However, the dimensional and structural controllability of conventional porous AAOs is limited to a narrow range because there are only a few electrolytes that work in this process. Here, we provide a novel anodizing method using an alkaline electrolyte, sodium tetraborate (Na2B4O7), for the fabrication of a high-aspect ratio, self-ordered nanospike porous AAO structure. This self-ordered porous AAO structure possesses a wide range of the interpore distance under a new anodizing regime, and highly ordered porous AAO structures can be fabricated using pre-nanotexturing of Al. The vertical pore walls of porous AAOs have unique nanospikes measuring several tens of nanometers in periodicity, and we demonstrate that AAO can be used as a template for the fabrication of nanomaterials with a large surface area. We also reveal that stable anodizing without the occurrence of oxide burning and the subsequent formation of uniform self-ordered AAO structures can be achieved on complicated three-dimensional substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA