Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2216564120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379351

RESUMO

Patients with permanent hypoparathyroidism require lifelong replacement therapy to avoid life-threatening complications, The benefits of conventional treatment are limited, however. Transplanting a functional parathyroid gland (PTG) would yield better results. Parathyroid gland cells generated from pluripotent stem cells in vitro to date cannot mimic the physiological responses to extracellular calcium that are essential for calcium homeostasis. We thus hypothesized that blastocyst complementation (BC) could be a better strategy for generating functional PTG cells and compensating loss of parathyroid function. We here describe generation of fully functional PTGs from mouse embryonic stem cells (mESCs) with single-step BC. Using CRISPR-Cas9 knockout of Glial cells missing2 (Gcm2), we efficiently produced aparathyroid embryos for BC. In these embryos, mESCs differentiated into endocrinologically mature PTGs that rescued Gcm2-/- mice from neonatal death. The mESC-derived PTGs responded to extracellular calcium, restoring calcium homeostasis on transplantation into mice surgically rendered hypoparathyroid. We also successfully generated functional interspecies PTGs in Gcm2-/- rat neonates, an accomplishment with potential for future human PTG therapy using xenogeneic animal BC. Our results demonstrate that BC can produce functional endocrine organs and constitute a concept in treatment of hypoparathyroidism.


Assuntos
Hipoparatireoidismo , Glândulas Paratireoides , Humanos , Animais , Camundongos , Ratos , Cálcio , Hipoparatireoidismo/genética , Hipoparatireoidismo/terapia , Cálcio da Dieta , Blastocisto
2.
Endocr J ; 71(9): 827-837, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38910132

RESUMO

Although growth hormone (GH) and prolactin (PRL) are usually recognized as pituitary hormones, their expression is not restricted to the adenohypophysis and can also be found in extra-pituitary tissues including placenta. Furthermore, GH, PRL, and their receptors structurally belong to the cytokine family of proteins, and indeed they have remarkable pleiotropic effects. In this review, we analyzed the biological roles of GH/PRL from an evolutionary perspective. We have recognized that the biological significance of GH/PRL can be summarized as follows: cytokines (metabokines) that regulate the shift of nutrients and even of whole bodies to live in the most appropriate environment(s) for conducting growth and reproduction. In this sense, the common keyword of the two metabokines is "shift" for environmental adaptation. Considering that these metabokines flexibly changed their biological roles, GH/PRL may have played important roles during vertebrate evolution.


Assuntos
Evolução Biológica , Hormônio do Crescimento , Prolactina , Humanos , Prolactina/metabolismo , Prolactina/fisiologia , Animais , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/fisiologia , Feminino , Reprodução/fisiologia , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/fisiologia
3.
Endocr J ; 69(9): 1053-1060, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35296577

RESUMO

Cushing's disease is an endocrine disorder characterized by hypercortisolism, mainly caused by autonomous production of ACTH from pituitary adenomas. Autonomous ACTH secretion results in excess cortisol production from the adrenal glands, and corticotroph adenoma cells disrupt the normal cortisol feedback mechanism. Pan-histone deacetylase (HDAC) inhibitors inhibit cell proliferation and ACTH production in AtT-20 corticotroph tumor cells. A selective HDAC6 inhibitor has been known to exert antitumor effects and reduce adverse effects related to the inhibition of other HDACs. The current study demonstrated that the potent and selective HDAC6 inhibitor tubastatin A has inhibitory effects on proopiomelanocortin (Pomc) and pituitary tumor-transforming gene 1 (Pttg1) mRNA expression, involved in cell proliferation. The phosphorylated Akt/Akt protein levels were increased after treatment with tubastatin A. Therefore, the proliferation of corticotroph cells may be regulated through the Akt-Pttg1 pathway. Dexamethasone treatment also decreased the Pomc mRNA level. Combined tubastatin A and dexamethasone treatment showed additive effects on the Pomc mRNA level. Thus, tubastatin A may have applications in the treatment of Cushing's disease.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Hipersecreção Hipofisária de ACTH , Adenoma Hipofisário Secretor de ACT/metabolismo , Adenoma/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Proliferação de Células , Corticotrofos , Dexametasona/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Humanos , Hidrocortisona/metabolismo , Ácidos Hidroxâmicos , Indóis , Hipersecreção Hipofisária de ACTH/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo
4.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830130

RESUMO

This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates "stress coping" mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience.


Assuntos
Adaptação Fisiológica/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico/fisiologia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Humanos , Modelos Biológicos
5.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072036

RESUMO

The hypothalamic-pituitary-adrenal axis is stimulated in response to stress. When activated, it is suppressed by the negative feedback effect of glucocorticoids. Glucocorticoids directly inhibit proopiomelanocortin (Pomc) gene expression in the pituitary. Glucocorticoid signaling is mediated via glucocorticoid receptors, 11ß-hydroxysteroid dehydrogenases, and the FK506-binding immunophilins, Fkbp4 and Fkbp5. Fkbp4 and Fkbp5 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor, resulting in modulation of the glucocorticoid action. Here, we explored the regulation of Fkbp4 and Fkbp5 genes and their proteins with dexamethasone, a major synthetic glucocorticoid drug, in murine AtT-20 corticotroph cells. To elucidate further roles of Fkbp4 and Fkbp5, we examined their effects on Pomc mRNA levels in corticotroph cells. Dexamethasone decreased Pomc mRNA levels as well as Fkpb4 mRNA levels in mouse corticotroph cells. Dexamethasone tended to decrease Fkbp4 protein levels, while it increased Fkpb5 mRNA and its protein levels. The dexamethasone-induced decreases in Pomc mRNA levels were partially canceled by Fkbp4 knockdown. Alternatively, Pomc mRNA levels were further decreased by Fkbp5 knockdown. Thus, Fkbp4 contributes to the negative feedback of glucocorticoids, and Fkbp5 reduces the efficiency of the glucocorticoid effect on Pomc gene expression in pituitary corticotroph cells.


Assuntos
Corticotrofos/metabolismo , Regulação da Expressão Gênica , Pró-Opiomelanocortina/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Biomarcadores , Corticotrofos/citologia , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glucocorticoides/metabolismo , Camundongos , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Tacrolimo/genética
6.
J Biol Chem ; 292(26): 10791-10800, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28465347

RESUMO

Selenoprotein P (encoded by SELENOP in humans, Selenop in rat), a liver-derived secretory protein, induces resistance to insulin and vascular endothelial growth factor (VEGF) in type 2 diabetes. Suppression of selenoprotein P may provide a novel therapeutic approach to treating type 2 diabetes; however, few drugs inhibiting SELENOP expression in hepatocytes have been identified. The present findings demonstrate that eicosapentaenoic acid (EPA) suppresses SELENOP expression by inactivating sterol regulatory element-binding protein-1c (SREBP-1c, encoded by Srebf1 in rat) in H4IIEC3 hepatocytes. Treatment with EPA caused concentration- and time-dependent reduction in SELENOP promoter activity. EPA activated AMP-activated protein kinase (AMPK); however, the inhibitory effect of EPA on SELENOP promoter activity was not canceled with an AMPK inhibitor compound C and dominant-negative AMPK transfection. Deletion mutant promoter assays and computational analysis of transcription factor-binding sites conserved among the species resulted in identification of a sterol regulatory element (SRE)-like site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay revealed that EPA decreases binding of SREBP-1c to the SELENOP promoter. Knockdown of Srebf1 resulted in a significant down-regulation of Selenop expression. Conversely, SREBP-1c overexpression inhibited the suppressive effect of EPA. These data provide a novel mechanism of action for EPA involving improvement of systemic insulin sensitivity through the regulation of selenoprotein P production independently of the AMPK pathway and suggest an additional approach to developing anti-diabetic drugs.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Hepatócitos/metabolismo , Selenoproteína P/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Ratos , Selenoproteína P/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
7.
Endocr J ; 63(9): 765-784, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27350721

RESUMO

This clinical practice guideline of the diagnosis and treatment of adrenal insufficiency (AI) including adrenal crisis was produced on behalf of the Japan Endocrine Society. This evidence-based guideline was developed by a committee including all authors, and was reviewed by a subcommittee of the Japan Endocrine Society. The Japanese version has already been published, and the essential points have been summarized in this English language version. We recommend diagnostic tests, including measurement of basal cortisol and ACTH levels in combination with a rapid ACTH (250 µg corticotropin) test, the CRH test, and for particular situations the insulin tolerance test. Cut-off values in basal and peak cortisol levels after the rapid ACTH or CRH tests are proposed based on the assumption that a peak cortisol level ≥18 µg/dL in the insulin tolerance test indicates normal adrenal function. In adult AI patients, 15-25 mg hydrocortisone (HC) in 2-3 daily doses, depending on adrenal reserve and body weight, is a basic replacement regime for AI. In special situations such as sickness, operations, pregnancy and drug interactions, cautious HC dosing or the correct choice of glucocorticoids is necessary. From long-term treatment, optimal diurnal rhythm and concentration of serum cortisol are important for the prevention of cardiovascular disease and osteoporosis. In maintenance therapy during the growth period of patients with 21-hydroxylase deficiency, proper doses of HC should be used, and long-acting glucocorticoids should not be used. Education and carrying an emergency card are essential for the prevention and rapid treatment of adrenal crisis.


Assuntos
Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/terapia , Hormônio Adrenocorticotrópico/análise , Hormônio Adrenocorticotrópico/sangue , Adulto , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/normas , Hormônio Liberador da Corticotropina/sangue , Feminino , Humanos , Hidrocortisona/sangue , Insulina/sangue , Japão , Testes de Função Adreno-Hipofisária/métodos , Testes de Função Adreno-Hipofisária/normas , Gravidez , Sociedades Médicas
8.
J Cell Sci ; 126(Pt 17): 3939-47, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23843607

RESUMO

Epithelial-mesenchymal transition (EMT) has an essential role in organogenesis and contributes to a host of pathologies, including carcinogenesis. Hypoxia (low oxygen supply) aids tumor metastasis in part by promoting EMT in cancer cells. The underlying mechanism whereby hypoxia orchestrates EMT remains poorly defined. Here we report that SIRT1, a multifaceted player in tumorigenesis, opposed ovarian cancer metastasis in vitro and in vivo by impeding EMT. Hypoxic stress downregulated the expression of SIRT1, primarily at the transcriptional level, by reducing the occupancy of the transcriptional activator Sp1 on the proximal promoter of the SIRT1 gene in a SUMOylation-dependent manner. Further analysis revealed that the SUMO E3 ligase PIASy (also known as PIAS4) was induced by hypoxia and prevented Sp1 from binding to the SIRT1 promoter. Conversely, knockdown of PIASy by small interfering RNA (siRNA) restored Sp1 binding and SIRT1 expression in cancer cells challenged with hypobaric hypoxia, reversed cancer cell EMT, and attenuated metastasis in vivo in nude mice. Importantly, analysis of human ovarian tumor specimens indicated that PIASy expression was positively, whereas SIRT1 expression was inversely, correlated with cancer aggressiveness. In summary, our work has identified a new pathway that links downregulation of SIRT1 to hypoxia-induced EMT in ovarian cancer cells and, as such, sheds light on the development of novel anti-tumor therapeutics.


Assuntos
Transição Epitelial-Mesenquimal/genética , Neoplasias Ovarianas/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Sirtuína 1/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica/genética , Proteínas de Ligação a Poli-ADP-Ribose , Regiões Promotoras Genéticas , Ligação Proteica/genética , Proteínas Inibidoras de STAT Ativados/genética , Interferência de RNA , RNA Interferente Pequeno , Sirtuína 1/biossíntese , Sirtuína 1/genética , Sumoilação/genética , Transcrição Gênica
9.
Biochem Biophys Res Commun ; 459(1): 172-7, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25727018

RESUMO

Functional interaction of clock genes and pituitary hormones was investigated by focusing on bone morphogenetic protein (BMP)-4 and melatonin actions in anterior pituitary cells. A significant correlation between the mRNA expression of proopiomelanocortin (POMC) and Per2 was revealed in serial cultures of corticotrope AtT20 cells. Knockdown of Per2 expression by siRNA in AtT20 cells resulted in a significant reduction of POMC mRNA level with or without corticotropin-releasing hormone (CRH) stimulation. Treatments with BMP-4 and melatonin, both of which suppress POMC expression, reduced Per2 mRNA as well as protein levels in AtT20 cells. On the other hand, in lactosomatotrope GH3 cells, an expressional correlation was found between prolactin (PRL) and Clock mRNA levels, which was attenuated in the presence of forskolin treatment. The siRNA-mediated knockdown of Clock expression, but not that of Bmal1, significantly reduced PRL mRNA levels in GH3 cells. Interestingly, Clock mRNA and protein levels did not fluctuate with melatonin, BMP-4 or forskolin treatment, although Bmal1 expression was significantly increased by forskolin treatment. Collectively, a significant correlation between the expression of POMC and Per2 and that between PRL and Clock were uncovered in corticotrope and lactosomatotrope cells, respectively. Per2 expression was inhibited by POMC modulators including melatonin and BMP-4, while Clock expression was steadily maintained. Thus, the effects of melatonin and BMP-4 on clock gene expression may imply differential stability of circadian rhythms of adrenocorticotropin (ACTH) and PRL secreted from the anterior pituitary.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Relógios Circadianos/genética , Corticotrofos/fisiologia , Melatonina/farmacologia , Fatores de Transcrição ARNTL/genética , Animais , Proteína Morfogenética Óssea 4/fisiologia , Proteínas CLOCK/genética , Linhagem Celular/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Corticotrofos/efeitos dos fármacos , Criptocromos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Lactotrofos/efeitos dos fármacos , Lactotrofos/fisiologia , Melatonina/fisiologia , Camundongos , Proteínas Circadianas Period/genética , Pró-Opiomelanocortina/genética , Prolactina/genética , Prolactina/metabolismo , Ratos
10.
Circ Res ; 112(7): 1004-12, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23421989

RESUMO

RATIONALE: Inhibition of histone deacetylases (HDACs) results in attenuated development of hypertension in deoxycorticosterone acetate-induced hypertensive rats and spontaneously hypertensive rats. However, the molecular mechanism remains elusive. OBJECTIVE: We hypothesized that HDAC inhibition attenuates transcriptional activity of mineralocorticoid receptor (MR) through its acetylation and prevents development of hypertension in deoxycorticosterone acetate-induced hypertensive rats. METHODS AND RESULTS: Expression of MR target genes was measured by quantitative real-time polymerase chain reaction. Recruitment of MR and RNA polymerase II on promoters of target genes was analyzed by chromatin immunoprecipitation assay. Live cell imaging was performed for visualization of nuclear translocation of MR. MR acetylation was determined by Western blot with anti-acetyl-lysine antibody after immunoprecipitation with anti-MR antibody. Transcriptional activity of MR was determined by luciferase assay. For establishment of a hyperaldosteronism animal, Sprague-Dawley rats underwent uninephrectomy and received subcutaneous injection of 40 mg/kg per week of deoxycorticosterone acetate and drinking water containing 1% NaCl. Treatment with a HDAC class I inhibitor resulted in reduced expression of MR target genes in accordance with reduced recruitment of MR and RNA polymerase II on promoters of target genes. HDAC inhibition promoted MR acetylation, leading to decreased transcriptional activity of MR. Knockdown or inhibition of HDAC3 resulted in reduced expression of MR target genes induced by mineralocorticoids. CONCLUSIONS: These results indicate that HDAC inhibition attenuates transcriptional activity of MR through its acetylation and prevents development of hypertension in deoxycorticosterone acetate-induced hypertensive rats.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Hipertensão Renal/prevenção & controle , Receptores de Mineralocorticoides/genética , Ácido Valproico/farmacologia , Acetilação/efeitos dos fármacos , Aldosterona/farmacologia , Animais , DNA Polimerase II/metabolismo , Desoxicorticosterona/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Hipertensão Renal/induzido quimicamente , Masculino , Mineralocorticoides/farmacologia , Nefrectomia , Regiões Promotoras Genéticas/genética , Ratos , Ratos Sprague-Dawley , Receptores de Mineralocorticoides/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA