RESUMO
MOTIVATION: Direct reprogramming (DR) is a process that directly converts somatic cells to target cells. Although DR via small molecules is safer than using transcription factors (TFs) in terms of avoidance of tumorigenic risk, the determination of DR-inducing small molecules is challenging. RESULTS: Here we present a novel in silico method, DIRECTEUR, to predict small molecules that replace TFs for DR. We extracted DR-characteristic genes using transcriptome profiles of cells in which DR was induced by TFs, and performed a variant of simulated annealing to explore small molecule combinations with similar gene expression patterns with DR-inducing TFs. We applied DIRECTEUR to predicting combinations of small molecules that convert fibroblasts into neurons or cardiomyocytes, and were able to reproduce experimentally verified and functionally related molecules inducing the corresponding conversions. The proposed method is expected to be useful for practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION: The code and data are available at the following link: https://github.com/HamanoLaboratory/DIRECTEUR.git.
Assuntos
Fatores de Transcrição , Transcriptoma , Fatores de Transcrição/metabolismo , Reprogramação Celular , Neurônios/metabolismo , Fibroblastos/metabolismoRESUMO
BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.
Assuntos
Asma , Biomarcadores , Vesículas Extracelulares , Galectinas , Sinusite , Humanos , Asma/sangue , Asma/fisiopatologia , Asma/imunologia , Asma/diagnóstico , Vesículas Extracelulares/metabolismo , Feminino , Masculino , Galectinas/sangue , Biomarcadores/sangue , Adulto , Pessoa de Meia-Idade , Sinusite/sangue , Sinusite/imunologia , Rinite/sangue , Rinite/imunologia , Rinite/fisiopatologia , Pólipos Nasais/imunologia , Pólipos Nasais/sangue , Eosinófilos/imunologia , Idoso , Doença CrônicaRESUMO
MOTIVATION: A critical element of drug development is the identification of therapeutic targets for diseases. However, the depletion of therapeutic targets is a serious problem. RESULTS: In this study, we propose the novel concept of target repositioning, an extension of the concept of drug repositioning, to predict new therapeutic targets for various diseases. Predictions were performed by a trans-disease analysis which integrated genetically perturbed transcriptomic signatures (knockdown of 4345 genes and overexpression of 3114 genes) and disease-specific gene transcriptomic signatures of 79 diseases. The trans-disease method, which takes into account similarities among diseases, enabled us to distinguish the inhibitory from activatory targets and to predict the therapeutic targetability of not only proteins with known target-disease associations but also orphan proteins without known associations. Our proposed method is expected to be useful for understanding the commonality of mechanisms among diseases and for therapeutic target identification in drug discovery. AVAILABILITY AND IMPLEMENTATION: Supplemental information and software are available at the following website [http://labo.bio.kyutech.ac.jp/~yamani/target_repositioning/]. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Reposicionamento de Medicamentos , Transcriptoma , Algoritmos , Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , SoftwareRESUMO
MOTIVATION: Direct cell conversion, direct reprogramming (DR), is an innovative technology that directly converts source cells to target cells without bypassing induced pluripotent stem cells. The use of small compounds (e.g. drugs) for DR can help avoid carcinogenic risk induced by gene transfection; however, experimentally identifying small compounds remains challenging because of combinatorial explosion. RESULTS: In this article, we present a new computational method, COMPRENDRE (combinatorial optimization of pathway regulations for direct reprograming), to elucidate the mechanism of small compound-based DR and predict new combinations of small compounds for DR. We estimated the potential target proteins of DR-inducing small compounds and identified a set of target pathways involving DR. We identified multiple DR-related pathways that have not previously been reported to induce neurons or cardiomyocytes from fibroblasts. To overcome the problem of combinatorial explosion, we developed a variant of a simulated annealing algorithm to identify the best set of compounds that can regulate DR-related pathways. Consequently, the proposed method enabled to predict new DR-inducing candidate combinations with fewer compounds and to successfully reproduce experimentally verified compounds inducing the direct conversion from fibroblasts to neurons or cardiomyocytes. The proposed method is expected to be useful for practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION: The code supporting the current study is available at the http://labo.bio.kyutech.ac.jp/~yamani/comprendre. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Células-Tronco Pluripotentes Induzidas , Algoritmos , Fibroblastos , Neurônios , ProteínasRESUMO
MOTIVATION: Direct reprogramming involves the direct conversion of fully differentiated mature cell types into various other cell types while bypassing an intermediate pluripotent state (e.g. induced pluripotent stem cells). Cell differentiation by direct reprogramming is determined by two types of transcription factors (TFs): pioneer factors (PFs) and cooperative TFs. PFs have the distinct ability to open chromatin aggregations, assemble a collective of cooperative TFs and activate gene expression. The experimental determination of two types of TFs is extremely difficult and costly. RESULTS: In this study, we developed a novel computational method, TRANSDIRE (TRANS-omics-based approach for DIrect REprogramming), to predict the TFs that induce direct reprogramming in various human cell types using multiple omics data. In the algorithm, potential PFs were predicted based on low signal chromatin regions, and the cooperative TFs were predicted through a trans-omics analysis of genomic data (e.g. enhancers), transcriptome data (e.g. gene expression profiles in human cells), epigenome data (e.g. chromatin immunoprecipitation sequencing data) and interactome data. We applied the proposed methods to the reconstruction of TFs that induce direct reprogramming from fibroblasts to six other cell types: hepatocytes, cartilaginous cells, neurons, cardiomyocytes, pancreatic cells and Paneth cells. We demonstrated that the methods successfully predicted TFs for most cell conversions with high accuracy. Thus, the proposed methods are expected to be useful for various practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION: The source code and data are available at the following website: http://figshare.com/s/b653781a5b9e6639972b. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Cromatina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Elucidating the modes of action (MoAs) of drugs and drug candidate compounds is critical for guiding translation from drug discovery to clinical application. Despite the development of several data-driven approaches for predicting chemical-disease associations, the molecular cues that organize the epigenetic landscape of drug responses remain poorly understood. RESULTS: With the use of a computational method, we attempted to elucidate the epigenetic landscape of drug responses, in terms of transcription factors (TFs), through large-scale ChIP-seq data analyses. In the algorithm, we systematically identified TFs that regulate the expression of chemically induced genes by integrating transcriptome data from chemical induction experiments and almost all publicly available ChIP-seq data (consisting of 13,558 experiments). By relating the resultant chemical-TF associations to a repository of associated proteins for a wide range of diseases, we made a comprehensive prediction of chemical-TF-disease associations, which could then be used to account for drug MoAs. Using this approach, we predicted that: (1) cisplatin promotes the anti-tumor activity of TP53 family members but suppresses the cancer-inducing function of MYCs; (2) inhibition of RELA and E2F1 is pivotal for leflunomide to exhibit antiproliferative activity; and (3) CHD8 mediates valproic acid-induced autism. CONCLUSIONS: Our proposed approach has the potential to elucidate the MoAs for both approved drugs and candidate compounds from an epigenetic perspective, thereby revealing new therapeutic targets, and to guide the discovery of unexpected therapeutic effects, side effects, and novel targets and actions.
Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Preparações Farmacêuticas , Sítios de Ligação , Análise de Dados , Epigênese Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Targeting mutated oncogenes is an effective approach for treating cancer. The 4 main driver genes of pancreatic ductal adenocarcinoma (PDAC) are KRAS, TP53, CDKN2A, and SMAD4, collectively called the "big 4" of PDAC, however they remain challenging therapeutic targets. In this study, ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 (ASAP2), one of the ArfGAP family, was identified as a novel driver gene in PDAC. Clinical analysis with PDAC datasets showed that ASAP2 was overexpressed in PDAC cells based on increased DNA copy numbers, and high ASAP2 expression contributed to a poor prognosis in PDAC. The biological roles of ASAP2 were investigated using ASAP2-knockout PDAC cells generated with CRISPR-Cas9 technology or transfected PDAC cells. In vitro and in vivo analyses showed that ASAP2 promoted tumor growth by facilitating cell cycle progression through phosphorylation of epidermal growth factor receptor (EGFR). A repositioned drug targeting the ASAP2 pathway was identified using a bioinformatics approach. The gene perturbation correlation method showed that niclosamide, an antiparasitic drug, suppressed PDAC growth by inhibition of ASAP2 expression. These data show that ASAP2 is a novel druggable driver gene that activates the EGFR signaling pathway. Furthermore, niclosamide was identified as a repositioned therapeutic agent for PDAC possibly targeting ASAP2.
Assuntos
Carcinoma Ductal Pancreático/genética , Proteínas Ativadoras de GTPase/genética , Neoplasias Pancreáticas/genética , Animais , Carcinoma Ductal Pancreático/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes erbB-1/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genéticaRESUMO
MOTIVATION: Disease states are distinguished from each other in terms of differing clinical phenotypes, but characteristic molecular features are often common to various diseases. Similarities between diseases can be explained by characteristic gene expression patterns. However, most disease-disease relationships remain uncharacterized. RESULTS: In this study, we proposed a novel approach for network-based characterization of disease-disease relationships in terms of drugs and therapeutic targets. We performed large-scale analyses of omics data and molecular interaction networks for 79 diseases, including adrenoleukodystrophy, leukaemia, Alzheimer's disease, asthma, atopic dermatitis, breast cancer, cystic fibrosis and inflammatory bowel disease. We quantified disease-disease similarities based on proximities of abnormally expressed genes in various molecular networks, and showed that similarities between diseases could be explained by characteristic molecular network topologies. Furthermore, we developed a kernel matrix regression algorithm to predict the commonalities of drugs and therapeutic targets among diseases. Our comprehensive prediction strategy indicated many new associations among phenotypically diverse diseases. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Biologia Computacional , Preparações Farmacêuticas , Algoritmos , Expressão Gênica , FenótipoRESUMO
MOTIVATION: Genome-wide identification of the transcriptomic responses of human cell lines to drug treatments is a challenging issue in medical and pharmaceutical research. However, drug-induced gene expression profiles are largely unknown and unobserved for all combinations of drugs and human cell lines, which is a serious obstacle in practical applications. RESULTS: Here, we developed a novel computational method to predict unknown parts of drug-induced gene expression profiles for various human cell lines and predict new drug therapeutic indications for a wide range of diseases. We proposed a tensor-train weighted optimization (TT-WOPT) algorithm to predict the potential values for unknown parts in tensor-structured gene expression data. Our results revealed that the proposed TT-WOPT algorithm can accurately reconstruct drug-induced gene expression data for a range of human cell lines in the Library of Integrated Network-based Cellular Signatures. The results also revealed that in comparison with the use of original gene expression profiles, the use of imputed gene expression profiles improved the accuracy of drug repositioning. We also performed a comprehensive prediction of drug indications for diseases with gene expression profiles, which suggested many potential drug indications that were not predicted by previous approaches. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Biologia Computacional , Transcriptoma , Algoritmos , Linhagem Celular , Reposicionamento de Medicamentos , HumanosRESUMO
The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a mathematical model with precise parameters using only these data. The present work proposes a simple method, referred to as PENDISC (Parameter Estimation in a N on- DImensionalized S-system with Constraints), to assist the complex process of parameter estimation in the construction of a mathematical model for a given metabolic reaction system. The PENDISC method was evaluated using two simple mathematical models: a linear metabolic pathway model with inhibition and a branched metabolic pathway model with inhibition and activation. The results indicate that a smaller number of data points and rate constant parameters enhances the agreement between calculated values and time-series data of metabolite concentrations, and leads to faster convergence when the same initial estimates are used for the fitting. This method is also shown to be applicable to noisy time-series data and to unmeasurable metabolite concentrations in a network, and to have a potential to handle metabolome data of a relatively large-scale metabolic reaction system. Furthermore, it was applied to aspartate-derived amino acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that the mathematical model constructed satisfactorily agrees with the time-series datasets of seven metabolite concentrations.
Assuntos
Redes e Vias Metabólicas/fisiologia , Aminoácidos/biossíntese , Arabidopsis/metabolismo , Simulação por Computador , Cinética , Modelos BiológicosRESUMO
The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers from multiple omics data with biological pathway knowledge is a challenging issue in precision medicine. In this paper, we present a novel computational method to identify diagnosis-specific trans-omic biomarkers from multiple omics data. In the algorithm, we integrated multi-class sparse canonical correlation analysis (MSCCA) and molecular pathway analysis in order to derive discriminative molecular features that are correlated across different omics layers. We applied our proposed method to analyzing proteome and metabolome data of heart failure (HF), and extracted trans-omic biomarkers for HF subtypes; specifically, ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We were able to detect not only individual proteins that were previously reported from single-omics studies but also correlated protein-metabolite pairs characteristic of HF disease subtypes. For example, we identified hexokinase1(HK1)-d-fructose-6-phosphate as a paired trans-omic biomarker for DCM, which could significantly perturb amino-sugar metabolism. Our proposed method is expected to be useful for various applications in precision medicine.
Assuntos
Algoritmos , Medicina de Precisão , Humanos , Biomarcadores/análise , Proteoma , MetabolomaRESUMO
BACKGROUND: Combination therapy can offer greater efficacy on medical treatments. However, the discovery of synergistic drug combinations is challenging. We propose a novel computational method, SyndrumNET, to predict synergistic drug combinations by network propagation with trans-omics analyses. METHODS: The prediction is based on the topological relationship, network-based proximity, and transcriptional correlation between diseases and drugs. SyndrumNET was applied to analyzing six diseases including asthma, diabetes, hypertension, colorectal cancer, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). RESULTS: Here we show that SyndrumNET outperforms the previous methods in terms of high accuracy. We perform in vitro cell survival assays to validate our prediction for CML. Of the top 17 predicted drug pairs, 14 drug pairs successfully exhibits synergistic anticancer effects. Our mode-of-action analysis also reveals that the drug synergy of the top predicted combination of capsaicin and mitoxantrone is due to the complementary regulation of 12 pathways, including the Rap1 signaling pathway. CONCLUSIONS: The proposed method is expected to be useful for discovering synergistic drug combinations for various complex diseases.
Adding drug treatments together can sometimes produce better results for patients. We introduced a new computer-based method called SyndrumNET, designed to identify effective drug combinations for treating diseases. The method uses data about how diseases and drugs interact at a molecular level to predict which drugs work well together. Tested on six different diseases, such as asthma and different types of cancer, SyndrumNET proved to be more accurate than previous approaches. For example, most of the drug combinations predicted by SyndrumNET to rank highly have shown better combination effects on leukemia cells. This method also helped understand why certain drug combinations work better by analyzing their effects on cellular pathways. The findings suggest that SyndrumNET could be a valuable tool in developing more effective treatment for various complex diseases.
RESUMO
Computational de novo drug design is a challenging issue in medicine, and it is desirable to consider all of the relevant information of the biological systems in a disease state. Here, we propose a novel computational method to generate drug candidate molecular structures from patient gene expression profiles via deep learning, which we call DRAGONET. Our model can generate new molecules that are likely to counteract disease-specific gene expression patterns in patients, which is made possible by exploring the latent space constructed by a transformer-based variational autoencoder and integrating the substructures of disease-correlated molecules. We applied DRAGONET to generate drug candidate molecules for gastric cancer, atopic dermatitis, and Alzheimer's disease, and demonstrated that the newly generated molecules were chemically similar to registered drugs for each disease. This approach is applicable to diseases with unknown therapeutic target proteins and will make a significant contribution to the field of precision medicine.
Assuntos
Doença de Alzheimer , Aprendizado Profundo , Humanos , Transcriptoma , Estrutura Molecular , Desenho de Fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genéticaRESUMO
Genome-wide identification of single-cell transcriptomic responses of drugs in various human cells is a challenging issue in medical and pharmaceutical research. Here we present a computational method, tensor-based imputation of gene-expression data at the single-cell level (TIGERS), which reveals the drug-induced single-cell transcriptomic landscape. With this algorithm, we predict missing drug-induced single-cell gene-expression data with tensor imputation, and identify trajectories of regulated pathways considering intercellular heterogeneity. Tensor imputation outperformed existing imputation methods for data completion, and provided cell-type-specific transcriptomic responses for unobserved drugs. For example, TIGERS correctly predicted the cell-type-specific expression of maker genes for pancreatic islets. Pathway trajectory analysis of the imputed gene-expression profiles of all combinations of drugs and human cells identified single-cell-specific drug activities and pathway trajectories that reflect drug-induced changes in pathway regulation. The proposed method is expected to expand our understanding of the single-cell mechanisms of drugs at the pathway level.
Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Transcriptoma/genética , AlgoritmosRESUMO
Drugs are expected to recover the cell system away from the impaired state to normalcy through disease treatment. However, the understanding of gene regulatory machinery underlying drug activity or disease pathogenesis is far from complete. Here, we perform large-scale regulome analysis for various diseases in terms of gene regulatory machinery. Transcriptome signatures were converted into regulome signatures of transcription factors by integrating publicly available ChIP-seq data. Regulome-based correlations between diseases and their approved drugs were much clearer than the transcriptome-based correlations. For example, an inverse correlation was observed for cancers, whereas a positive correlation was observed for immune system diseases. After demonstrating the usefulness of the regulome-based drug discovery method in terms of accuracy and applicability, we predicted new drugs for nonsmall cell lung cancer and validated the anticancer activity in vitro. The proposed method is useful for understanding disease-disease relationships and drug discovery.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transcriptoma/genética , Regulação da Expressão Gênica , Fatores de Transcrição/genéticaRESUMO
Glycans play important roles in cell communication, protein interaction, and immunity, and structural changes in glycans are associated with the regulation of a range of biological pathways involved in disease. However, our understanding of the detailed relationships between specific diseases and glycans is very limited. In this study, we proposed an omics-based method to investigate the correlations between glycans and a wide range of human diseases. We analyzed the gene expression patterns of glycogenes (glycosyltransferases and glycosidases) for 79 different diseases. A biological pathway-based glycogene signature was constructed to identify the alteration in glycan biosynthesis and the associated glycan structures for each disease state. The degradation of N-glycan and keratan sulfate, for example, may promote the growth or metastasis of multiple types of cancer, including endometrial, gastric, and nasopharyngeal. Our results also revealed that commonalities between diseases can be interpreted using glycogene expression patterns, as well as the associated glycan structure patterns at the level of the affected pathway. The proposed method is expected to be useful for understanding the relationships between glycans, glycogenes, and disease and identifying disease-specific glycan biomarkers.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Polissacarídeos/genética , Biomarcadores Tumorais/metabolismo , Configuração de Carboidratos , Humanos , Neoplasias/metabolismo , Polissacarídeos/metabolismoRESUMO
Identification of the modes of action of bioactive compounds is an important issue in chemical systems biology. In this chapter we review a recently developed data-driven approach using large-scale chemically induced transcriptome data acquired from the Library of Integrated Network-based Cellular Signatures to elucidate the modes of action of bioactive compounds. First, we present a method for pathway enrichment analyses of regulated genes to reveal biological pathways activated by compounds. Next, we present a method using the pre-knowledge on chemical-protein interactome for predicting potential target proteins, including primary targets and off-targets, with transcriptional similarity. Finally, we present a method based on the target proteins for predicting new therapeutic indications for a variety of diseases. These approaches are expected to be useful for mode-of-action analysis, drug discovery, and drug repositioning.
Assuntos
Descoberta de Drogas/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Modelos Biológicos , Bibliotecas de Moléculas PequenasRESUMO
Genome-wide identification of all target proteins of drug candidate compounds is a challenging issue in drug discovery. Moreover, emerging phenotypic effects, including therapeutic and adverse effects, are heavily dependent on the inhibition or activation of target proteins. Here we propose a novel computational method for predicting inhibitory and activatory targets of drug candidate compounds. Specifically, we integrated chemically-induced and genetically-perturbed gene expression profiles in human cell lines, which avoided dependence on chemical structures of compounds or proteins. Predictive models for individual target proteins were simultaneously constructed by the joint learning algorithm based on transcriptomic changes in global patterns of gene expression profiles following chemical treatments, and following knock-down and over-expression of proteins. This method discriminates between inhibitory and activatory targets and enables accurate identification of therapeutic effects. Herein, we comprehensively predicted drug-target-disease association networks for 1,124 drugs, 829 target proteins, and 365 human diseases, and validated some of these predictions in vitro. The proposed method is expected to facilitate identification of new drug indications and potential adverse effects.
Assuntos
Biologia Computacional/métodos , Desenho de Fármacos , Descoberta de Drogas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Transcriptoma , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Redes Reguladoras de Genes , Humanos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacosRESUMO
In a mathematical model, estimation of parameters from time-series data of metabolic concentrations in cells is a challenging task. However, it seems that a promising approach for such estimation has not yet been established. Biochemical Systems Theory (BST) is a powerful methodology to construct a power-law type model for a given metabolic reaction system and to then characterize it efficiently. In this paper, we discuss the use of an S-system root-finding method (S-system method) to estimate parameters from time-series data of metabolite concentrations. We demonstrate that the S-system method is superior to the Newton-Raphson method in terms of the convergence region and iteration number. We also investigate the usefulness of a translocation technique and a complex-step differentiation method toward the practical application of the S-system method. The results indicate that the S-system method is useful to construct mathematical models for a variety of metabolic reaction networks.
Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Algoritmos , Fenômenos Bioquímicos , Cinética , Conceitos Matemáticos , Teoria de SistemasRESUMO
Developing drugs with anticancer activity and low toxic side-effects at low costs is a challenging issue for cancer chemotherapy. In this work, we propose to use molecular pathways as the therapeutic targets and develop a novel computational approach for drug repositioning for cancer treatment. We analyzed chemically induced gene expression data of 1112 drugs on 66 human cell lines and searched for drugs that inactivate pathways involved in the growth of cancer cells (cell cycle) and activate pathways that contribute to the death of cancer cells (e.g., apoptosis and p53 signaling). Finally, we performed a large-scale prediction of potential anticancer effects for all the drugs and experimentally validated the prediction results via three in vitro cellular assays that evaluate cell viability, cytotoxicity, and apoptosis induction. Using this strategy, we successfully identified several potential anticancer drugs. The proposed pathway-based method has great potential to improve drug repositioning research for cancer treatment.