Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(3): e2021GL096302, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35864851

RESUMO

We present images of Venus from the Wide-Field Imager for Parker Solar Probe (WISPR) telescope on board the Parker Solar Probe (PSP) spacecraft, obtained during PSP's third and fourth flybys of Venus on 2020 July 11 and 2021 February 20, respectively. Thermal emission from the surface is observed on the night side, representing the shortest wavelength observations of this emission ever, the first detection of the Venusian surface by an optical telescope observing below 0.8 µm. Consistent with previous observations at 1 µm, the cooler highland areas are fainter than the surrounding lowlands. The irradiances measured by WISPR are consistent with model predictions assuming a surface temperature of T = 735 K. In addition to the thermal emission, the WISPR images also show bright nightglow emission at the limb, and we compare the WISPR intensities with previous spectroscopic measurements of the molecular oxygen nightglow lines from Venus Express.

2.
Ecol Appl ; 28(3): 749-760, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29509310

RESUMO

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.


Assuntos
Biodiversidade , Tecnologia de Sensoriamento Remoto/instrumentação , Oceanos e Mares , Fitoplâncton
3.
Astrobiology ; 21(10): 1305-1315, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33512272

RESUMO

Ancient Venus and Earth may have been similar in crucial ways for the development of life, such as liquid water oceans, land-ocean interfaces, favorable chemical ingredients, and energy pathways. If life ever developed on, or was transported to, early Venus from elsewhere, it might have thrived, expanded, and then survived the changes that have led to an inhospitable surface on Venus today. The Venus cloud layer may provide a refugium for extant life that persisted from an earlier more habitable surface environment. We introduce the Venus Life Equation (VLE)-a theory and evidence-based approach to calculate the probability of extant life on Venus, L, using three primary factors of life: Origination, Robustness, and Continuity, or L = O · R · C. We evaluate each of these factors using our current understanding of Earth and Venus environmental conditions from the Archean to the present. We find that the probability of origination of life on Venus would be similar to that of Earth, and argue that the other factors should be nonzero, comparable with other promising astrobiological targets in the solar system. The VLE also identifies poorly understood aspects of Venus that can be addressed by direct observations with future exploration missions.


Assuntos
Vênus , Atmosfera , Planeta Terra , Exobiologia , Sistema Solar
4.
Astrobiology ; 21(8): 1017-1027, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34382857

RESUMO

Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine whether environments are habitable, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science, and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planeta Terra , Planetas
5.
Science ; 333(6051): 1856-9, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21960626

RESUMO

High-resolution images of Mercury's surface from orbit reveal that many bright deposits within impact craters exhibit fresh-appearing, irregular, shallow, rimless depressions. The depressions, or hollows, range from tens of meters to a few kilometers across, and many have high-reflectance interiors and halos. The host rocks, which are associated with crater central peaks, peak rings, floors, and walls, are interpreted to have been excavated from depth by the crater-forming process. The most likely formation mechanisms for the hollows involve recent loss of volatiles through some combination of sublimation, space weathering, outgassing, or pyroclastic volcanism. These features support the inference that Mercury's interior contains higher abundances of volatile materials than predicted by most scenarios for the formation of the solar system's innermost planet.

6.
Science ; 329(5992): 672-5, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20647427

RESUMO

During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere.

7.
Science ; 324(5927): 610-3, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19407195

RESUMO

Mercury is surrounded by a tenuous exosphere that is supplied primarily by the planet's surface materials and is known to contain sodium, potassium, and calcium. Observations by the Mercury Atmospheric and Surface Composition Spectrometer during MESSENGER's second Mercury flyby revealed the presence of neutral magnesium in the tail (anti-sunward) region of the exosphere, as well as differing spatial distributions of magnesium, calcium, and sodium atoms in both the tail and the nightside, near-planet exosphere. Analysis of these observations, supplemented by observations during the first Mercury flyby, as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

8.
Science ; 321(5885): 92-4, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599778

RESUMO

During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

9.
Science ; 321(5885): 62-5, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599769

RESUMO

During MESSENGER's first flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer made simultaneous mid-ultraviolet to near-infrared (wavelengths of 200 to 1300 nanometers) reflectance observations of the surface. An ultraviolet absorption (<280 nanometers) suggests that the ferrous oxide (Fe2+) content of silicates in average surface material is low (less than 2 to 3 weight percent). This result is supported by the lack of a detectable 1-micrometer Fe2+ absorption band in high-spatial-resolution spectra of mature surface materials as well as immature crater ejecta, which suggests that the ferrous iron content may be low both on the surface and at depth. Differences in absorption features and slope among the spectra are evidence for variations in composition and regolith maturation of Mercury's surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA