Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(5): E626-E639, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38536037

RESUMO

Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.


Assuntos
Metabolismo Energético , Estradiol , Hormônio Foliculoestimulante , Ovariectomia , Ratos Wistar , Animais , Feminino , Metabolismo Energético/efeitos dos fármacos , Ratos , Hormônio Foliculoestimulante/metabolismo , Estradiol/farmacologia , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
2.
Soc Work Health Care ; 60(8-9): 614-630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34698618

RESUMO

This study explored the patient characteristics and outcomes in relation to guardianship in a large-scale sub-acute Australian hospital. Fifteen patients who appointed a guardian at The Kingston Center, Monash Health, participated through exploratory data collection and analysis utilizing a de-identifiable template. The findings revealed both diverse and complex patient characteristics, and ethical dilemmas in patient outcomes for social workers. Patient outcomes post-guardianship appointment and discharge highlighted a negative impact from long length of stay and the iatrogenic impact on patient wellbeing in hospital. The study reflected a disparity between patients' discharge goals and their outcomes indicating significant ethical dilemmas and complexities for social workers in ensuring rights to autonomy and responsibility for safety are balanced.


Assuntos
Tutores Legais , Serviço Social , Idoso , Austrália , Hospitais , Humanos , Alta do Paciente
3.
Am J Physiol Regul Integr Comp Physiol ; 319(2): R171-R183, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32551825

RESUMO

Exercise is often used as a strategy for weight loss maintenance. In preclinical models, we have shown that exercise may be beneficial because it counters the biological drive to regain weight. However, our studies have demonstrated sex differences in the response to exercise in this context. In the present study, we sought to better understand why females and males exhibit different compensatory food eating behaviors in response to regular exercise. Using a forced treadmill exercise paradigm, we measured weight gain, energy expenditure, food intake in real time, and the anorectic effects of leptin. The 4-wk exercise training resulted in reduced weight gain in males and sustained weight gain in females. In male rats, exercise decreased intake, whereas it increased food intake in females. Our results suggest that the anorectic effects of leptin were not responsible for these sex differences in appetite in response to exercise. If these results translate to the human condition, they may reveal important information for the use and application of regular exercise programs.


Assuntos
Apetite/fisiologia , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Ingestão de Energia/fisiologia , Feminino , Masculino , Ratos
4.
Am J Physiol Endocrinol Metab ; 316(5): E977-E986, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912962

RESUMO

Prevalence of obesity is exacerbated by low rates of successful long-term weight loss maintenance (WLM). In part, relapse from WLM to obesity is due to a reduction in energy expenditure (EE) that persists throughout WLM and relapse. Thus, interventions that increase EE might facilitate WLM. In obese mice that were calorically restricted to reduce body weight by ~20%, we manipulated EE throughout WLM and early relapse using intermittent cold exposure (ICE; 4°C, 90 min/day, 5 days/wk, within the last 3 h of the light cycle). EE, energy intake, and spontaneous physical activity were measured during the obese, WLM, and relapse phases. During WLM and relapse, the ICE group expended more energy during the light cycle because of cold exposure but expended less energy in the dark cycle, which led to no overall difference in total daily EE. The compensation in EE appeared to be mediated by activity, whereby the ICE group was more active during the light cycle because of cold exposure but less active during the dark cycle, which led to no overall effect on total daily activity during WLM and relapse. In brown adipose tissue of relapsing mice, the ICE group had greater mRNA expression of Dio2 and protein expression of UCP1 but lower mRNA expression of Prdm16. In summary, these findings indicate that despite robust increases in EE during cold exposures, ICE is unable to alter total daily EE during WLM or early relapse, likely due to compensatory behaviors in activity.


Assuntos
Manutenção do Peso Corporal/fisiologia , Temperatura Baixa , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Termogênese/fisiologia , Aumento de Peso/fisiologia , Redução de Peso/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Obesidade , Fotoperíodo , RNA Mensageiro/metabolismo , Recidiva , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Iodotironina Desiodinase Tipo II
5.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R684-R695, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553623

RESUMO

Exercise is a potent facilitator of long-term weight loss maintenance (WLM), whereby it decreases appetite and increases energy expenditure beyond the cost of the exercise bout. We have previously shown that exercise may amplify energy expenditure through energetically expensive nutrient deposition. Therefore, we investigated the effect of exercise on hepatic de novo lipogenesis (DNL) during WLM and relapse to obesity. Obese rats were calorically restricted with (EX) or without (SED) treadmill exercise (1 h/day, 6 days/wk, 15 m/min) to induce and maintain weight loss. After 6 wk of WLM, subsets of WLM-SED and WLM-EX rats were allowed ad libitum access to food for 1 day to promote relapse (REL). An energy gap-matched group of sedentary, relapsing rats (REL-GM) were provided a diet matched to the positive energy imbalance of the REL-EX rats. During relapse, exercise increased enrichment of hepatic DN-derived lipids and induced hepatic molecular adaptations favoring DNL compared with the gap-matched controls. In the liver, compared with both REL-SED and REL-GM rats, REL-EX rats had lower hepatic expression of genes required for cholesterol biosynthesis; greater hepatic expression of genes that mediate very low-density lipoprotein synthesis and secretion; and greater mRNA expression of Cyp27a1, which encodes an enzyme involved in the biosynthesis of bile acids. Altogether, these data provide compelling evidence that the liver has an active role in exercise-mediated potentiation of energy expenditure during early relapse.


Assuntos
Colesterol/biossíntese , Metabolismo Energético , Lipogênese , Fígado/metabolismo , Obesidade/terapia , Condicionamento Físico Animal , Aumento de Peso , Redução de Peso , Animais , Ácidos e Sais Biliares/biossíntese , Restrição Calórica , Modelos Animais de Doenças , Metabolismo Energético/genética , Regulação Enzimológica da Expressão Gênica , Insulina/sangue , Lipogênese/genética , Masculino , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Recidiva , Corrida , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Am J Physiol Endocrinol Metab ; 309(1): E63-71, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968576

RESUMO

Femoral subcutaneous adipose tissue (SAT) appears to be cardioprotective compared with abdominal SAT, possibly through better triglyceride (TG) sequestration. We hypothesized that removal of femoral SAT would increase postprandial TG through a reduction in dietary fatty acid (FA) storage. Normal-weight (means ± SD; BMI 23.9 ± 2.6 kg/m(2)) women (n = 29; age 45 ± 6 yr) were randomized to femoral lipectomy (LIPO) or control (CON) and followed for 1 yr. Regional adiposity was measured by DEXA and CT. A liquid meal labeled with [(14)C]oleic acid was used to trace the appearance of dietary FA in plasma (6-h postprandial TG), breath (24-h oxidation), and SAT (24-h [(14)C]TG storage). Fasting LPL activity was measured in abdominal and femoral SAT. DEXA leg fat mass was reduced after LIPO vs. CON (Δ-1.4 ± 0.7 vs. 0.1 ± 0.5 kg, P < 0.001) and remained reduced at 1 yr (-1.1 ± 1.4 vs. -0.2 ± 0.5 kg, P < 0.05), as did CT thigh subcutaneous fat area (-39.6 ± 36.6 vs. 4.7 ± 14.6 cm(2), P < 0.05); DEXA trunk fat mass and CT visceral fat area were unchanged. Postprandial TG increased (5.9 ± 7.7 vs. -0.6 ± 5.3 × 10(3) mg/dl, P < 0.05) and femoral SAT LPL activity decreased (-21.9 ± 22.3 vs. 10.5 ± 26.5 nmol·min(-1)·g(-1), P < 0.05) 1 yr following LIPO vs. CON. There were no group differences in (14)C-labeled TG appearing in abdominal and femoral SAT or elsewhere. In conclusion, femoral fat remained reduced 1 yr following lipectomy and was accompanied by increased postprandial TG and reduced femoral SAT LPL activity. There were no changes in storage of meal-derived FA or visceral fat. Our data support a protective role for femoral adiposity on circulating TG independent of dietary FA storage and visceral adiposity.


Assuntos
Hiperlipidemias/etiologia , Lipectomia , Gordura Subcutânea/cirurgia , Coxa da Perna/cirurgia , Adiposidade/fisiologia , Adulto , Feminino , Humanos , Hiperlipidemias/sangue , Lipectomia/métodos , Pessoa de Meia-Idade , Complicações Pós-Operatórias/sangue , Período Pós-Prandial , Gordura Subcutânea Abdominal/cirurgia , Triglicerídeos/sangue
7.
Proc Natl Acad Sci U S A ; 109(11): 4320-5, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371574

RESUMO

Fructose intake from added sugars correlates with the epidemic rise in obesity, metabolic syndrome, and nonalcoholic fatty liver disease. Fructose intake also causes features of metabolic syndrome in laboratory animals and humans. The first enzyme in fructose metabolism is fructokinase, which exists as two isoforms, A and C. Here we show that fructose-induced metabolic syndrome is prevented in mice lacking both isoforms but is exacerbated in mice lacking fructokinase A. Fructokinase C is expressed primarily in liver, intestine, and kidney and has high affinity for fructose, resulting in rapid metabolism and marked ATP depletion. In contrast, fructokinase A is widely distributed, has low affinity for fructose, and has less dramatic effects on ATP levels. By reducing the amount of fructose for metabolism in the liver, fructokinase A protects against fructokinase C-mediated metabolic syndrome. These studies provide insights into the mechanisms by which fructose causes obesity and metabolic syndrome.


Assuntos
Frutoquinases/metabolismo , Síndrome Metabólica/enzimologia , Animais , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Frutose/administração & dosagem , Frutose/metabolismo , Frutose/farmacologia , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Am J Physiol Endocrinol Metab ; 307(4): E355-64, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24961240

RESUMO

Aerobic capacity/fitness significantly impacts susceptibility for fatty liver and diabetes, but the mechanisms remain unknown. Herein, we utilized rats selectively bred for high (HCR) and low (LCR) intrinsic aerobic capacity to examine the mechanisms by which aerobic capacity impacts metabolic vulnerability for fatty liver following a 3-day high-fat diet (HFD). Indirect calorimetry assessment of energy metabolism combined with radiolabeled dietary food was employed to examine systemic metabolism in combination with ex vivo measurements of hepatic lipid oxidation. The LCR, but not HCR, displayed increased hepatic lipid accumulation in response to the HFD despite both groups increasing energy intake. However, LCR rats had a greater increase in energy intake and demonstrated greater daily weight gain and percent body fat due to HFD compared with HCR. Additionally, total energy expenditure was higher in the larger LCR. However, controlling for the difference in body weight, the LCR has lower resting energy expenditure compared with HCR. Importantly, respiratory quotient was significantly higher during the HFD in the LCR compared with HCR, suggesting reduced whole body lipid utilization in the LCR. This was confirmed by the observed lower whole body dietary fatty acid oxidation in LCR compared with HCR. Furthermore, LCR liver homogenate and isolated mitochondria showed lower complete fatty acid oxidation compared with HCR. We conclude that rats bred for low intrinsic aerobic capacity show greater susceptibility for dietary-induced hepatic steatosis, which is associated with a lower energy expenditure and reduced whole body and hepatic mitochondrial lipid oxidation.


Assuntos
Dieta Hiperlipídica , Tolerância ao Exercício/fisiologia , Fígado Gorduroso/etiologia , Aptidão Física/fisiologia , Animais , Células Cultivadas , Gorduras na Dieta/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Masculino , Condicionamento Físico Animal , Ratos , Ratos Endogâmicos
9.
Hepatology ; 58(5): 1632-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23813872

RESUMO

UNLABELLED: Fructose intake from added sugars has been implicated as a cause of nonalcoholic fatty liver disease. Here we tested the hypothesis that fructose may interact with a high-fat diet to induce fatty liver, and to determine if this was dependent on a key enzyme in fructose metabolism, fructokinase. Wild-type or fructokinase knockout mice were fed a low-fat (11%), high-fat (36%), or high-fat (36%) and high-sucrose (30%) diet for 15 weeks. Both wild-type and fructokinase knockout mice developed obesity with mild hepatic steatosis and no evidence of hepatic inflammation on a high-fat diet compared to a low-fat diet. In contrast, wild-type mice fed a high-fat and high-sucrose diet developed more severe hepatic steatosis with low-grade inflammation and fibrosis, as noted by increased CD68, tumor necrosis factor alpha, monocyte chemoattractant protein-1, alpha-smooth muscle actin, and collagen I and TIMP1 expression. These changes were prevented in the fructokinase knockout mice. CONCLUSION: An additive effect of high-fat and high-sucrose diet on the development of hepatic steatosis exists. Further, the combination of sucrose with high-fat diet may induce steatohepatitis. The protection in fructokinase knockout mice suggests a key role for fructose (from sucrose) in this development of steatohepatitis. These studies emphasize the important role of fructose in the development of fatty liver and nonalcoholic steatohepatitis.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso/etiologia , Frutoquinases/fisiologia , Sacarose/administração & dosagem , Animais , Ingestão de Energia , Frutose/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso
10.
J Lipid Res ; 54(5): 1346-59, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23402988

RESUMO

The cytoplasmic lipid droplet (CLD) protein perilipin-2 (Plin2) is expressed in multiple nonadipose tissues, where it is thought to play a role in regulating their lipid storage properties. However, the extent to which Plin2 functions in nutrient utilization and metabolism, or how it influences the consequences of over-feeding, remains unclear. In this study, we demonstrate that the absence of Plin2 prevents high-fat diet(HFD)-induced obesity in male and female mice. This response is associated with increased formation of subcutaneous beige adipocyte cells with uncoupling protein 1 expression, and amelioration of inflammatory foci formation in white adipose tissue and steatosis in the liver. Experiments demonstrate that Plin2 loss results in reduced energy intake and increased physical activity in response to HFD feeding. Our study provides the first evidence that Plin2 contributes to HFD-induced obesity by modulating food intake, and that its absence prevents obesity-associated adipose tissue inflammatory foci and liver steatosis.


Assuntos
Fígado Gorduroso/metabolismo , Proteínas de Membrana/metabolismo , Obesidade/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/patologia , Perilipina-2
11.
Am J Physiol Gastrointest Liver Physiol ; 305(11): G868-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24091599

RESUMO

Changes in substrate utilization and reduced mitochondrial respiratory capacity following exposure to energy-dense, high-fat diets (HFD) are putatively key components in the development of obesity-related metabolic disease. We examined the effect of a 3-day HFD on isolated liver mitochondrial respiration and whole body energy utilization in obesity-prone (OP) rats. We also examined if hepatic overexpression of peroxisomal proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial respiratory capacity and biogenesis, would modify liver and whole body responses to the HFD. Acute, 3-day HFD (45% kcal) in OP rats resulted in increased daily energy intake, energy balance, weight gain, and adiposity, without an increase in liver triglyceride (triacylglycerol) accumulation. HFD-fed OP rats also displayed decreased whole body substrate switching from the dark to the light cycle, which was paired with reductions in hepatic mitochondrial respiration of multiple substrates in multiple respiratory states. Hepatic PGC-1α overexpression was observed to protect whole body substrate switching, as well as maintain mitochondrial respiration, following the acute HFD. Additionally, liver PGC-1α overexpression did not alter whole body dietary fatty acid oxidation but resulted in greater storage of dietary free fatty acids in liver lipid, primarily as triacylglycerol. Together, these data demonstrate that a short-term HFD can result in a decrease in metabolic flexibility and hepatic mitochondrial respiratory capacity in OP rats that is completely prevented by hepatic overexpression of PGC-1α.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição/metabolismo , Adiposidade , Animais , Respiração Celular , Ingestão de Energia , Fígado/metabolismo , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar , Fatores de Transcrição/genética , Transcrição Gênica , Triglicerídeos/metabolismo , Aumento de Peso
12.
ANZ J Surg ; 93(12): 2981-2985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37043690

RESUMO

BACKGROUND: To assess the results of ureterorenoscopy (URS) for upper tract urolithiasis in a contemporary Australian tertiary healthcare setting. METHODS: Hospital records of all URS stone procedures performed between January 2017 and December 2018 in a metropolitan service were retrospectively reviewed. Outcome measures including stone free rates, adherence to postoperative follow-up and complications rates were recorded. RESULTS: 385 patients (387 renal units) with mean age 53.8 (range 18-89) underwent URS for stones measuring between 2 and 27 mm (median 8 mm). 465 URS were performed with 1029 total procedures performed. 48.6% of operations were performed as day cases. Complications were recorded in 9% of the 465 URS cases with 42.9% of these Clavien II or more. The representation rate to our Emergency Departments was 15.4%. Only 49.1% (201) of patients had a follow-up review with imaging to assess stone free rates. Of the 201 patients who underwent imaging, only 38.3% were stone free. Stone analysis was performed in 34.5%. CONCLUSION: Less than half of all patients were reviewed despite undergoing expensive, time consuming surgery for a condition with a high recurrence rate. In agreement with recent publications stone-free rates were low, with significant complications and representation rates. Stone surgery should be given the attention and resources equivalent to cancer surgery to improve results. LEVEL OF EVIDENCE: 2b.


Assuntos
Cálculos Renais , Humanos , Pessoa de Meia-Idade , Cálculos Renais/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Austrália/epidemiologia , Ureteroscopia/métodos
13.
Psychiatr Serv ; 74(2): 166-172, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35983659

RESUMO

As reviewers, editors, and researchers with lived experience of mental health challenges, addiction, and/or psychosocial distress/disability, the authors have struggled to find an adequate way to address inappropriate or misleading use of the term "participatory methods" to describe research that involves people with lived experience in only a superficial or tokenistic manner. The authors of this article have found that, in their experience, editors or other reviewers often appear to give authors extensive leeway on claims of participatory methods that more accurately reflect tokenism or superficial involvement. The problem of co-optation is described, examples from the authors' experiences are given, the potential harms arising from co-optation are articulated, and a series of concrete actions that journal editors, reviewers, and authors can take to preserve the core intent of participatory approaches are offered. The authors conclude with a call to action: the mental health field must ensure that power imbalances that sustain epistemic injustice against people with lived experience are not worsened by poorly conducted or reported studies or by tokenistic participatory methods.


Assuntos
Serviços de Saúde Mental , Saúde Mental , Humanos , Empoderamento
14.
Protein Sci ; 31(9): e4387, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040254

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is a chromatin-modifying assembly that regulates gene expression and DNA damage repair. Despite its importance, limited structural information describing the complete NuRD complex is available and a detailed understanding of its mechanism is therefore lacking. Drawing on information from SEC-MALLS, DIA-MS, XLMS, negative-stain EM, X-ray crystallography, NMR spectroscopy, secondary structure predictions, and homology models, we applied Bayesian integrative structure determination to investigate the molecular architecture of three NuRD sub-complexes: MTA1-HDAC1-RBBP4, MTA1N -HDAC1-MBD3GATAD2CC , and MTA1-HDAC1-RBBP4-MBD3-GATAD2A [nucleosome deacetylase (NuDe)]. The integrative structures were corroborated by examining independent crosslinks, cryo-EM maps, biochemical assays, known cancer-associated mutations, and structure predictions from AlphaFold. The robustness of the models was assessed by jack-knifing. Localization of the full-length MBD3, which connects the deacetylase and chromatin remodeling modules in NuRD, has not previously been possible; our models indicate two different locations for MBD3, suggesting a mechanism by which MBD3 in the presence of GATAD2A asymmetrically bridges the two modules in NuRD. Further, our models uncovered three previously unrecognized subunit interfaces in NuDe: HDAC1C -MTA1BAH , MTA1BAH -MBD3MBD , and HDAC160-100 -MBD3MBD . Our approach also allowed us to localize regions of unknown structure, such as HDAC1C and MBD3IDR , thereby resulting in the most complete and robustly cross-validated structural characterization of these NuRD sub-complexes so far.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Nucleossomos , Teorema de Bayes , Montagem e Desmontagem da Cromatina , Histona Desacetilases/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
15.
Front Endocrinol (Lausanne) ; 13: 844877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721743

RESUMO

A subpopulation of adipocytes in the major adipose depots of mice is produced from hematopoietic stem cells rather than mesenchymal progenitors that are the source of conventional white and brown/beige adipocytes. To analyze the impact of hematopoietic stem cell-derived adipocytes (HSCDAs) in the adipose niche we transplanted HSCs in which expression of a diphtheria toxin gene was under the control of the adipocyte-specific adiponectin gene promoter into irradiated wild type recipients. Thus, only adipocytes produced from HSC would be ablated while conventional white and brown adipocytes produced from mesenchymal progenitor cells would be spared. Wild type mice transplanted with HSCs from mice containing a reporter gene, but not the diphtheria toxin gene, regulated by the adiponectin gene promoter served as controls. In mice in which HSCDA production was suppressed, adipocyte size declined while adipose depot weights were unchanged and the number of conventional adipocyte progenitors significantly increased. We also measured a paradoxical increase in circulating leptin levels while physical activity was significantly decreased in the HSCDA depleted mice. Finally, insulin sensitivity was significantly reduced in HSCDA depleted mice. In contrast, loss of HSCDA production had no effect on body weight, components of energy balance, or levels of several circulating adipokines and tissue-resident inflammatory cells. These data indicate that ablation of this low-abundance subpopulation of adipocytes is associated with changes in circulating leptin levels and leptin-regulated endpoints associated with adipose tissue function. How they do so remains a mystery, but our results highlight the need for additional studies to explore the role of HSCDAs in other physiologic contexts such as obesity, metabolic dysfunction or loss of sex hormone production.


Assuntos
Insulina , Leptina , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Toxina Diftérica , Feminino , Células-Tronco Hematopoéticas , Insulina/metabolismo , Leptina/metabolismo , Camundongos
16.
Nutrients ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35276813

RESUMO

Breaking up sedentary behavior with short-frequent bouts of physical activity (PA) differentially influences metabolic health compared with the performance of a single-continuous bout of PA matched for total active time. However, the underlying mechanisms are unknown. We compared skeletal muscle mitochondrial respiration (high-resolution respirometry) and molecular adaptations (RNA sequencing) following 4-day exposure to breaks vs. energy-matched single-continuous PA bout in inactive adults with overweight/obesity. Participants (9M/10F, 32.2 ± 6.4 years, 30.3 ± 3.0 kg/m2) completed three 4-day interventions of a randomized cross-over study: SED, sedentary control; MICRO, 5 min brisk walking each hour for 9 h; ONE: 45 min/d continuous brisk walking bout. Fasted muscle biopsies were collected on day 5. Mitochondrial coupling in the presence of lipid-associated substrates was higher after ONE (4.8 ± 2.5) compared to MICRO (3.1 ± 1.1, p = 0.02) and SED (2.3 ± 1.0, p = 0.001). Respiratory rates did not differ across groups with carbohydrate-associated substrates. In pathways associated with muscle contraction transcription signaling, ONE and MICRO similarly enhanced Oxidative Phosphorylation and Sirtuin Signaling expression (p < 0.0001, for both). However, ONE (p < 0.001, for all), but not MICRO, had greater pathway enrichment, including Ca++, mTOR, AMPK, and HIF1α signaling, than SED. Although breaking up sedentary behavior triggered skeletal muscle molecular adaptations favoring oxidative capacity, it did not improve mitochondrial function over the short term.


Assuntos
Sobrepeso , Comportamento Sedentário , Adulto , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sobrepeso/metabolismo , Estresse Oxidativo
17.
Cancers (Basel) ; 14(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406548

RESUMO

Metabolic reprogramming remains largely understudied in relation to hormones in estrogen receptor (ER) and progesterone receptor (PR) positive breast cancer. In this study, we investigated how estrogens, progestins, or the combination, impact metabolism in three ER and PR positive breast cancer cell lines. We measured metabolites in the treated cells using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Top metabolic processes upregulated with each treatment involved glucose metabolism, including Warburg effect/glycolysis, gluconeogenesis, and the pentose phosphate pathway. RNA-sequencing and pathway analysis on two of the cell lines treated with the same hormones, found estrogens target oncogenes, such as MYC and PI3K/AKT/mTOR that control tumor metabolism, while progestins increased genes associated with fatty acid metabolism, and the estrogen/progestin combination additionally increased glycolysis. Phenotypic analysis of cell energy metabolism found that glycolysis was the primary hormonal target, particularly for the progestin and estrogen-progestin combination. Transmission electron microscopy found that, compared to vehicle, estrogens elongated mitochondria, which was reversed by co-treatment with progestins. Progestins promoted lipid storage both alone and in combination with estrogen. These findings highlight the shift in breast cancer cell metabolism to a more glycolytic and lipogenic phenotype in response to combination hormone treatment, which may contribute to a more metabolically adaptive state for cell survival.

18.
iScience ; 25(1): 103697, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35059607

RESUMO

Progression of autosomal dominant polycystic kidney disease (ADPKD) is modified by metabolic defects and obesity. Indeed, reduced food intake slows cyst growth in preclinical rodent studies. Here, we demonstrate the feasibility of daily caloric restriction (DCR) and intermittent fasting (IMF) in a cohort of overweight or obese patients with ADPKD. Clinically significant weight loss occurred with both DCR and IMF; however, weight loss was greater and adherence and tolerability were better with DCR. Further, slowed kidney growth correlated with body weight and visceral adiposity loss independent of dietary regimen. Similarly, we compared the therapeutic efficacy of DCR, IMF, and time restricted feeding (TRF) using an orthologous ADPKD mouse model. Only ADPKD animals on DCR lost significant weight and showed slowed cyst growth compared to ad libitum, IMF, or TRF feeding. Collectively, this supports therapeutic feasibility of caloric restriction in ADPKD, with potential efficacy benefits driven by weight loss.

19.
Am J Physiol Regul Integr Comp Physiol ; 301(3): R581-600, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21677272

RESUMO

Dieting is the most common approach to losing weight for the majority of obese and overweight individuals. Restricting intake leads to weight loss in the short term, but, by itself, dieting has a relatively poor success rate for long-term weight reduction. Most obese people eventually regain the weight they have worked so hard to lose. Weight regain has emerged as one of the most significant obstacles for obesity therapeutics, undoubtedly perpetuating the epidemic of excess weight that now affects more than 60% of U.S. adults. In this review, we summarize the evidence of biology's role in the problem of weight regain. Biology's impact is first placed in context with other pressures known to affect body weight. Then, the biological adaptations to an energy-restricted, low-fat diet that are known to occur in the overweight and obese are reviewed, and an integrative picture of energy homeostasis after long-term weight reduction and during weight regain is presented. Finally, a novel model is proposed to explain the persistence of the "energy depletion" signal during the dynamic metabolic state of weight regain, when traditional adiposity signals no longer reflect stored energy in the periphery. The preponderance of evidence would suggest that the biological response to weight loss involves comprehensive, persistent, and redundant adaptations in energy homeostasis and that these adaptations underlie the high recidivism rate in obesity therapeutics. To be successful in the long term, our strategies for preventing weight regain may need to be just as comprehensive, persistent, and redundant, as the biological adaptations they are attempting to counter.


Assuntos
Restrição Calórica/efeitos adversos , Dieta Redutora/efeitos adversos , Obesidade/tratamento farmacológico , Aumento de Peso , Redução de Peso , Adaptação Fisiológica , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Homeostase , Humanos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
20.
Am J Physiol Regul Integr Comp Physiol ; 301(3): R656-67, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21715696

RESUMO

The impact of regular exercise on energy balance, fuel utilization, and nutrient availability, during weight regain was studied in obese rats, which had lost 17% of their weight by a calorie-restricted, low-fat diet. Weight reduced rats were maintained for 6 wk with and without regular treadmill exercise (1 h/day, 6 days/wk, 15 m/min). In vivo tracers and indirect calorimetry were then used in combination to examine nutrient metabolism during weight maintenance (in energy balance) and during the first day of relapse when allowed to eat ad libitum (relapse). An additional group of relapsing, sedentary rats were provided just enough calories to create the same positive energy imbalance as the relapsing, exercised rats. Exercise attenuated the energy imbalance by 50%, reducing appetite and increasing energy requirements. Expenditure increased beyond the energetic cost of the exercise bout, as exercised rats expended more energy to store the same nutrient excess in sedentary rats with the matched energy imbalance. Compared with sedentary rats with the same energy imbalance, exercised rats exhibited the trafficking of dietary fat toward oxidation and away from storage in adipose tissue, as well as a higher net retention of fuel via de novo lipogenesis in adipose tissue. These metabolic changes in relapse were preceded by an increase in the skeletal muscle expression of genes involved in lipid uptake, mobilization, and oxidation. Our observations reveal a favorable shift in fuel utilization with regular exercise that increases the energetic cost of storing excess nutrients during relapse and alterations in circulating nutrients that may affect appetite. The attenuation of the biological drive to regain weight, involving both central and peripheral aspects of energy homeostasis, may explain, in part, the utility of regular exercise in preventing weight regain after weight loss.


Assuntos
Tecido Adiposo/metabolismo , Regulação do Apetite , Restrição Calórica , Dieta com Restrição de Gorduras , Metabolismo Energético , Obesidade/dietoterapia , Esforço Físico , Aumento de Peso , Adiposidade , Análise de Variância , Animais , Calorimetria Indireta , Modelos Animais de Doenças , Metabolismo Energético/genética , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Masculino , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/psicologia , Oxirredução , Ratos , Ratos Wistar , Fatores de Tempo , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA