RESUMO
T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Assuntos
Imunidade Humoral , Fosfatidiletanolaminas/metabolismo , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/imunologia , Sistemas CRISPR-Cas , Diferenciação Celular , Cistina Difosfato , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool) , RNA Nucleotidiltransferases , Transdução de SinaisRESUMO
Pantothenate kinase-associated neurodegeneration (PKAN) is characterized by a motor disorder with combinations of dystonia, parkinsonism, and spasticity, leading to premature death. PKAN is caused by mutations in the PANK2 gene that result in loss or reduction of PANK2 protein function. PANK2 is one of three kinases that initiate and regulate coenzyme A biosynthesis from vitamin B5, and the ability of BBP-671, an allosteric activator of pantothenate kinases, to enter the brain and elevate coenzyme A was investigated. The metabolic stability, protein binding, and membrane permeability of BBP-671 all suggest that it has the physical properties required to cross the blood-brain barrier. BBP-671 was detected in plasma, liver, cerebrospinal fluid, and brain following oral administration in rodents, demonstrating the ability of BBP-671 to penetrate the brain. The pharmacokinetic and pharmacodynamic properties of orally administered BBP-671 evaluated in cannulated rats showed that coenzyme A (CoA) concentrations were elevated in blood, liver, and brain. BBP-671 elevation of whole-blood acetyl-CoA served as a peripheral pharmacodynamic marker and provided a suitable method to assess target engagement. BBP-671 treatment elevated brain coenzyme A concentrations and improved movement and body weight in a PKAN mouse model. Thus, BBP-671 crosses the blood-brain barrier to correct the brain CoA deficiency in a PKAN mouse model, resulting in improved locomotion and survival and providing a preclinical foundation for the development of BBP-671 as a potential treatment of PKAN. SIGNIFICANCE STATEMENT: The blood-brain barrier represents a major hurdle for drugs targeting brain metabolism. This work describes the pharmacokinetic/pharmacodynamic properties of BBP-671, a pantothenate kinase activator. BBP-671 crosses the blood-brain barrier to correct the neuron-specific coenzyme A (CoA) deficiency and improve motor function in a mouse model of pantothenate kinase-associated neurodegeneration. The central role of CoA and acetyl-CoA in intermediary metabolism suggests that pantothenate kinase activators may be useful in modifying neurological metabolic disorders.
Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Camundongos , Animais , Ratos , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/uso terapêutico , Coenzima A/metabolismo , Modelos Animais de Doenças , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Encéfalo/metabolismoRESUMO
Propionic acidemia (PA, OMIM 606054) is a devastating inborn error of metabolism arising from mutations that reduce the activity of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). The defects in PCC reduce the concentrations of nonesterified coenzyme A (CoASH), thus compromising mitochondrial function and disrupting intermediary metabolism. Here, we use a hypomorphic PA mouse model to test the effectiveness of BBP-671 in correcting the metabolic imbalances in PA. BBP-671 is a high-affinity allosteric pantothenate kinase activator that counteracts feedback inhibition of the enzyme to increase the intracellular concentration of CoA. Liver CoASH and acetyl-CoA are depressed in PA mice and BBP-671 treatment normalizes the cellular concentrations of these two key cofactors. Hepatic propionyl-CoA is also reduced by BBP-671 leading to an improved intracellular C3:C2-CoA ratio. Elevated plasma C3:C2-carnitine ratio and methylcitrate, hallmark biomarkers of PA, are significantly reduced by BBP-671. The large elevations of malate and α-ketoglutarate in the urine of PA mice are biomarkers for compromised tricarboxylic acid cycle activity and BBP-671 therapy reduces the amounts of both metabolites. Furthermore, the low survival of PA mice is restored to normal by BBP-671. These data show that BBP-671 relieves CoA sequestration, improves mitochondrial function, reduces plasma PA biomarkers, and extends the lifespan of PA mice, providing the preclinical foundation for the therapeutic potential of BBP-671.
Assuntos
Acidemia Propiônica , Camundongos , Animais , Acidemia Propiônica/genética , Metilmalonil-CoA Descarboxilase/genética , Metilmalonil-CoA Descarboxilase/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , CarnitinaRESUMO
BACKGROUND: Pantothenate kinase (PANK) is the first and rate-controlling enzymatic step in the only pathway for cellular coenzyme A (CoA) biosynthesis. PANK-associated neurodegeneration (PKAN), formerly known as Hallervorden-Spatz disease, is a rare, life-threatening neurologic disorder that affects the CNS and arises from mutations in the human PANK2 gene. Pantazines, a class of small molecules containing the pantazine moiety, yield promising therapeutic effects in an animal model of brain CoA deficiency. A reliable technique to identify the neurometabolic effects of PANK dysfunction and to monitor therapeutic responses is needed. METHODS: We applied 1H magnetic resonance spectroscopy as a noninvasive technique to evaluate the therapeutic effects of the newly developed Pantazine BBP-671. RESULTS: 1H MRS reliably quantified changes in cerebral metabolites, including glutamate/glutamine, lactate, and N-acetyl aspartate in a neuronal Pank1 and Pank2 double-knockout (SynCre+ Pank1,2 dKO) mouse model of brain CoA deficiency. The neuronal SynCre+ Pank1,2 dKO mice had distinct decreases in Glx/tCr, NAA/tCr, and lactate/tCr ratios compared to the wildtype matched control mice that increased in response to BBP-671 treatment. CONCLUSIONS: BBP-671 treatment completely restored glutamate/glutamine levels in the brains of the mouse model, suggesting that these metabolites are promising clinically translatable biomarkers for future therapeutic trials.
Assuntos
Coenzima A , Neurodegeneração Associada a Pantotenato-Quinase , Animais , Encéfalo/patologia , Coenzima A/metabolismo , Modelos Animais de Doenças , Camundongos , Neurodegeneração Associada a Pantotenato-Quinase/genética , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
Coenzyme A (CoA) is an essential cofactor required for intermediary metabolism. Perturbations in homeostasis of CoA have been implicated in various pathologies; however, whether CoA homeostasis is changed and the extent to which CoA levels contribute to ventricular function and remodeling during pressure overload has not been explored. In this study, we sought to assess changes in CoA biosynthetic pathway during pressure overload and determine the impact of limiting CoA on cardiac function. We limited cardiac CoA levels by deleting the rate-limiting enzyme in CoA biosynthesis, pantothenate kinase 1 (Pank1). We found that constitutive, cardiomyocyte-specific Pank1 deletion (cmPank1-/-) significantly reduced PANK1 mRNA, PANK1 protein, and CoA levels compared with Pank1-sufficient littermates (cmPank1+/+) but exerted no obvious deleterious impact on the mice at baseline. We then subjected both groups of mice to pressure overload-induced heart failure. Interestingly, there was more ventricular dilation in cmPank1-/- during the pressure overload. To explore potential mechanisms contributing to this phenotype, we performed transcriptomic profiling, which suggested a role for Pank1 in regulating fibrotic and metabolic processes during the pressure overload. Indeed, Pank1 deletion exacerbated cardiac fibrosis following pressure overload. Because we were interested in the possibility of early metabolic impacts in response to pressure overload, we performed untargeted metabolomics, which indicated significant changes to metabolites involved in fatty acid and ketone metabolism, among other pathways. Collectively, our study underscores the role of elevated CoA levels in supporting fatty acid and ketone body oxidation, which may be more important than CoA-driven, enzyme-independent acetylation in the failing heart.NEW & NOTEWORTHY Changes in CoA homeostasis have been implicated in a variety of metabolic diseases; however, the extent to which changes in CoA homeostasis impacts remodeling has not been explored. We show that limiting cardiac CoA levels via PANK deletion exacerbated ventricular remodeling during pressure overload. Our results suggest that metabolic alterations, rather than structural alterations, associated with Pank1 deletion may underlie the exacerbated cardiac phenotype during pressure overload.
Assuntos
Metabolismo Energético , Miocárdio/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Apoptose , Pressão Arterial , Coenzima A/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Deleção de Genes , Humanos , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transcriptoma , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologiaRESUMO
BACKGROUND: This review highlights the recent scientific advances that have enabled rational design of novel clinical trials for pantothenate kinase-associated neurodegeneration (PKAN), a rare autosomal recessive neurogenetic disorder associated with progressive neurodegenerative changes and functional impairment. PKAN is caused by genetic variants in the PANK2 gene that result in dysfunction in pantothenate kinase 2 (PANK2) enzyme activity, with consequent disruption of coenzyme A (CoA) synthesis, and subsequent accumulation of brain iron. The clinical phenotype is varied and may include dystonia, rigidity, bradykinesia, postural instability, spasticity, loss of ambulation and ability to communicate, feeding difficulties, psychiatric issues, and cognitive and visual impairment. There are several symptom-targeted treatments, but these do not provide sustained benefit as the disorder progresses. OBJECTIVES: A detailed understanding of the molecular and biochemical pathogenesis of PKAN has opened the door for the design of novel rationally designed therapeutics that target the underlying mechanisms. METHODS: Two large double-blind phase 3 clinical trials have been completed for deferiprone (an iron chelation treatment) and fosmetpantotenate (precursor replacement therapy). A pilot open-label trial of pantethine as a potential precursor replacement strategy has also been completed, and a trial of 4-phosphopantetheine has begun enrollment. Several other compounds have been evaluated in pre-clinical studies, and additional clinical trials may be anticipated. CONCLUSIONS: Experience with these trials has encouraged a critical evaluation of optimal trial designs, as well as the development of PKAN-specific measures to monitor outcomes. PKAN provides a valuable example for understanding targeted drug development and clinical trial design for rare disorders. © 2021 International Parkinson and Movement Disorder Society.
Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Encéfalo/metabolismo , Humanos , Ferro , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Pantothenate kinase (PANK) is the critical regulator of intracellular levels of coenzyme A and has emerged as an attractive target for treating neurological and metabolic disorders. This report describes the optimization, synthesis, and full structure-activity relationships of a new chemical series of pantothenate competitive PANK inhibitors. Potent drug-like molecules were obtained by optimizing a high throughput screening hit, using lipophilic ligand efficiency (LipE) derived from human PANK3 IC50 values to guide ligand development. X-ray crystal structures of PANK3 with index inhibitors from the optimization were determined to rationalize the emerging structure activity relationships. The analysis revealed a key bidentate hydrogen bonding interaction between pyridazine and R306' as a major contributor to the LipE gain observed in the optimization. A tractable series of PANK3 modulators with nanomolar potency, excellent LipE values, desirable physicochemical properties, and a well-defined structural binding mode was produced from this study.
Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piridazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Ligantes , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-AtividadeRESUMO
Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine.
Assuntos
Arginina/metabolismo , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/imunologia , Proliferação de Células , Complexos Multiproteicos/metabolismo , Células Mieloides/imunologia , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Tolerância Imunológica , Terapia de Imunossupressão , Ativação Linfocitária , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Linfócitos T/metabolismoRESUMO
Pantothenate kinase is the master regulator of CoA biosynthesis and is feedback-inhibited by acetyl-CoA. Comparison of the human PANK3·acetyl-CoA complex to the structures of PANK3 in four catalytically relevant complexes, 5'-adenylyl-ß,γ-imidodiphosphate (AMPPNP)·Mg2+, AMPPNP·Mg2+·pantothenate, ADP·Mg2+·phosphopantothenate, and AMP phosphoramidate (AMPPN)·Mg2+, revealed a large conformational change in the dimeric enzyme. The amino-terminal nucleotide binding domain rotates to close the active site, and this allows the P-loop to engage ATP and facilitates required substrate/product interactions at the active site. Biochemical analyses showed that the transition between the inactive and active conformations, as assessed by the binding of either ATP·Mg2+ or acyl-CoA to PANK3, is highly cooperative indicating that both protomers move in concert. PANK3(G19V) cannot bind ATP, and biochemical analyses of an engineered PANK3/PANK3(G19V) heterodimer confirmed that the two active sites are functionally coupled. The communication between the two protomers is mediated by an α-helix that interacts with the ATP-binding site at its amino terminus and with the substrate/inhibitor-binding site of the opposite protomer at its carboxyl terminus. The two α-helices within the dimer together with the bound ligands create a ring that stabilizes the assembly in either the active closed conformation or the inactive open conformation. Thus, both active sites of the dimeric mammalian pantothenate kinases coordinately switch between the on and off states in response to intracellular concentrations of ATP and its key negative regulators, acetyl(acyl)-CoA.
Assuntos
Acil Coenzima A/química , Mutação de Sentido Incorreto , Fosfotransferases (Aceptor do Grupo Álcool)/química , Acil Coenzima A/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Domínios Proteicos , Estrutura Secundária de ProteínaRESUMO
Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function.
Assuntos
Coenzima A/metabolismo , Força da Mão/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regulação para CimaRESUMO
The endoplasmic reticulum (ER) is the cellular organelle responsible for protein folding and assembly, lipid and sterol biosynthesis, and calcium storage. The unfolded protein response (UPR) is an adaptive intracellular stress response to accumulation of unfolded or misfolded proteins in the ER. In this study, we show that the most conserved UPR sensor inositol-requiring enzyme 1 α (IRE1α), an ER transmembrane protein kinase/endoribonuclease, is required to maintain hepatic lipid homeostasis under ER stress conditions through repressing hepatic lipid accumulation and maintaining lipoprotein secretion. To elucidate physiological roles of IRE1α-mediated signalling in the liver, we generated hepatocyte-specific Ire1α-null mice by utilizing an albumin promoter-controlled Cre recombinase-mediated deletion. Deletion of Ire1α caused defective induction of genes encoding functions in ER-to-Golgi protein transport, oxidative protein folding, and ER-associated degradation (ERAD) of misfolded proteins, and led to selective induction of pro-apoptotic UPR trans-activators. We show that IRE1α is required to maintain the secretion efficiency of selective proteins. In the absence of ER stress, mice with hepatocyte-specific Ire1α deletion displayed modest hepatosteatosis that became profound after induction of ER stress. Further investigation revealed that IRE1α represses expression of key metabolic transcriptional regulators, including CCAAT/enhancer-binding protein (C/EBP) ß, C/EBPδ, peroxisome proliferator-activated receptor γ (PPARγ), and enzymes involved in triglyceride biosynthesis. IRE1α was also found to be required for efficient secretion of apolipoproteins upon disruption of ER homeostasis. Consistent with a role for IRE1α in preventing intracellular lipid accumulation, mice with hepatocyte-specific deletion of Ire1α developed severe hepatic steatosis after treatment with an ER stress-inducing anti-cancer drug Bortezomib, upon expression of a misfolding-prone human blood clotting factor VIII, or after partial hepatectomy. The identification of IRE1α as a key regulator to prevent hepatic steatosis provides novel insights into ER stress mechanisms in fatty liver diseases associated with toxic liver injuries.
Assuntos
Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Fígado Gorduroso/prevenção & controle , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos KnockoutRESUMO
Coenzyme A (CoA) is a ubiquitous cofactor involved in numerous essential biochemical transformations, and along with its thioesters is a key regulator of intermediary metabolism. Pantothenate (vitamin B5) phosphorylation by pantothenate kinase (PanK) is thought to control the rate of CoA production. Pantothenate kinase associated neurodegeneration is a hereditary disease that arises from mutations that inactivate the human PANK2 gene. Aryl phosphoramidate phosphopantothenate derivatives were prepared to test the feasibility of using phosphopantothenate replacement therapy to bypass the genetic deficiency in the Pank1(-/-) mouse model. The efficacies of candidate compounds were first compared by measuring the ability to increase CoA levels in Pank1(-/-) mouse embryo fibroblasts. Administration of selected candidate compounds to Pank1(-/-) mice corrected their deficiency in hepatic CoA. The PanK bypass was confirmed by the incorporation of intact phosphopantothenate into CoA using triple-isotopically labeled compound. These results provide strong support for PanK as a master regulator of intracellular CoA and illustrate the feasibility of employing PanK bypass therapy to restore CoA levels in genetically deficient mice.
Assuntos
Amidas/farmacologia , Coenzima A/biossíntese , Fígado/efeitos dos fármacos , Neurodegeneração Associada a Pantotenato-Quinase/dietoterapia , Ácido Pantotênico/análogos & derivados , Ácidos Fosfóricos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Administração Oral , Amidas/síntese química , Animais , Coenzima A/deficiência , Coenzima A/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Expressão Gênica , Humanos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Neurodegeneração Associada a Pantotenato-Quinase/enzimologia , Neurodegeneração Associada a Pantotenato-Quinase/genética , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Ácido Pantotênico/síntese química , Ácido Pantotênico/farmacologia , Ácidos Fosfóricos/síntese química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Cultura Primária de CélulasRESUMO
AIMS/HYPOTHESIS: Pantothenate kinase (PANK) is the first enzyme in CoA biosynthesis. Pank1-deficient mice have 40% lower liver CoA and fasting hypoglycaemia, which results from reduced gluconeogenesis. Single-nucleotide polymorphisms in the human PANK1 gene are associated with insulin levels, suggesting a link between CoA and insulin homeostasis. We determined whether Pank1 deficiency (1) modified insulin levels, (2) ameliorated hyperglycaemia and hyperinsulinaemia, and (3) improved acute glucose and insulin tolerance of leptin (Lep)-deficient mice. METHODS: Serum insulin and responses to glucose and insulin tolerance tests were determined in Pank1-deficient mice. Levels of CoA and regulating enzymes were measured in liver and skeletal muscle of Lep-deficient mice. Double Pank1/Lep-deficient mice were analysed for the diabetes-related phenotype and global metabolism. RESULTS: Pank1-deficient mice had lower serum insulin and improved glucose tolerance and insulin sensitivity compared with wild-type mice. Hepatic and muscle CoA was abnormally high in Lep-deficient mice. Pank1 deletion reduced hepatic CoA but not muscle CoA, reduced serum glucose and insulin, but did not normalise body weight or improve acute glucose tolerance or protein kinase B phosphorylation in Lep-deficient animals. Pank1/Lep double-deficient mice exhibited reduced whole-body metabolism of fatty acids and amino acids and had a greater reliance on carbohydrate use for energy production. CONCLUSIONS/INTERPRETATION: The results indicate that Pank1 deficiency drives a whole-body metabolic adaptation that improves aspects of the diabetic phenotype and uncouples hyperglycaemia and hyperinsulinaemia from obesity in leptin-deficient mice.
Assuntos
Metabolismo Energético/genética , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Resistência à Insulina/genética , Leptina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Glucose/metabolismo , Hiperglicemia/genética , Hiperinsulinismo/genética , Leptina/genética , Fígado/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genéticaRESUMO
The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell- and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Assuntos
Membrana Celular/metabolismo , Colina/metabolismo , Citidina Difosfato Colina/metabolismo , Fosfatidilcolinas/metabolismo , Animais , Transporte Biológico , Colina Quinase/metabolismo , Colina-Fosfato Citidililtransferase/metabolismo , Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
CoA (coenzyme A) is an essential cofactor that is emerging as a global regulator of energy metabolism. Tissue CoA levels are tightly regulated and vary in response to different conditions including nutritional state and diabetes. Recent studies reveal the ability of this cofactor to control the output of key metabolic pathways. CoA regulation is important for the maintenance of metabolic flexibility and glucose homoeostasis.
Assuntos
Coenzima A/metabolismo , Diabetes Mellitus/metabolismo , Animais , Hiperglicemia/metabolismo , CamundongosRESUMO
In 1945, Fritz Lipmann discovered a heat-stable cofactor required for many enzyme-catalysed acetylation reactions. He later determined the structure for this acetylation coenzyme, or coenzyme A (CoA), an achievement for which he was awarded the Nobel Prize in 1953. CoA is now firmly embedded in the literature, and in students' minds, as an acyl carrier in metabolic reactions. However, recent research has revealed diverse and important roles for CoA above and beyond intermediary metabolism. As well as participating in direct post-translational regulation of metabolic pathways by protein acetylation, CoA modulates the epigenome via acetylation of histones. The organization of CoA biosynthetic enzymes into multiprotein complexes with different partners also points to close linkages between the CoA pool and multiple signalling pathways. Dysregulation of CoA biosynthesis or CoA thioester homoeostasis is associated with various human pathologies and, although the biochemistry of CoA biosynthesis is highly conserved, there are significant sequence and structural differences between microbial and human biosynthetic enzymes. Therefore the CoA biosynthetic pathway is an attractive target for drug discovery. The purpose of the Coenzyme A and Its Derivatives in Cellular Metabolism and Disease Biochemical Society Focused Meeting was to bring together researchers from around the world to discuss the most recent advances on the influence of CoA, its biosynthetic enzymes and its thioesters in cellular metabolism and diseases and to discuss challenges and opportunities for the future.
Assuntos
Coenzima A/metabolismo , Acetilação , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Ácido Pantotênico/metabolismoRESUMO
CoA (coenzyme A) is an essential cofactor that is involved in many metabolic processes. CoA is derived from pantothenate in five biosynthetic reactions. The CoA biosynthetic pathway is regulated by PanKs (pantothenate kinases) and four active isoforms are expressed in mammals. The critical physiological functions of the PanKs are revealed by systematic deletion of the Pank genes in mice.
Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Coenzima A/metabolismo , Camundongos , Mitocôndrias/microbiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
Conversion of pantothenate to phosphopantothenate in humans is the first dedicated step in the coenzyme A (CoA) biosynthesis pathway and is mediated by four isoforms of pantothenate kinase. These enzymes are allosterically regulated by acyl-CoA levels, which control the rate of CoA biosynthesis. Small molecule activators of the PANK enzymes that overcome feedback suppression increase CoA levels in cultured cells and animals and have shown great potential for the treatment of pantothenate kinase-associated neurodegeneration and propionic acidemias. In this study, we detail the further optimization of PANK pyridazine activators using structure-guided design and focus on the cellular CoA activation potential, metabolic stability, and solubility as the primary drivers of the structure-activity relationship. These studies led to the prioritization of three late-stage preclinical lead PANK modulators with improved pharmacokinetic profiles and the ability to substantially increase brain CoA levels. Compound 22 (BBP-671) eventually advanced into clinical testing for the treatment of PKAN and propionic acidemia.
Assuntos
Encéfalo , Fosfotransferases (Aceptor do Grupo Álcool) , Piridazinas , Humanos , Animais , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridazinas/farmacocinética , Piridazinas/farmacologia , Piridazinas/química , Piridazinas/síntese química , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Relação Estrutura-Atividade , Ratos , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacocinética , Ativadores de Enzimas/síntese química , Coenzima A/metabolismo , CamundongosRESUMO
Isocitrate dehydrogenase (IDH) is a reversible enzyme that catalyzes the NADP(+)-dependent oxidative decarboxylation of isocitrate (ICT) to α-ketoglutarate (αKG) and the NADPH/CO(2)-dependent reductive carboxylation of αKG to ICT. Reductive carboxylation by IDH1 was potently inhibited by NADP(+) and, to a lesser extent, by ICT. IDH1 and IDH2 with cancer-associated mutations at the active site arginines were unable to carry out the reductive carboxylation of αKG. These mutants were also defective in ICT decarboxylation and converted αKG to 2-hydroxyglutarate using NADPH. These mutant proteins were thus defective in both of the normal reactions of IDH. Biochemical analysis of heterodimers between wild-type and mutant IDH1 subunits showed that the mutant subunit did not inactivate reductive carboxylation by the wild-type subunit. Cells expressing the mutant IDH are thus deficient in their capacity for reductive carboxylation and may be compromised in their ability to produce acetyl-CoA under hypoxia or when mitochondrial function is otherwise impaired.
Assuntos
Isocitrato Desidrogenase , Proteínas Mitocondriais , NADP/metabolismo , Proteínas de Neoplasias , Neoplasias , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , NADP/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , OxirreduçãoRESUMO
Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.