Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Pharmacol Exp Ther ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637015

RESUMO

Low efficacy mu opioid receptor (MOR) agonists may serve as novel candidate analgesics with improved safety relative to high-efficacy opioids. This study used a recently validated assay of pain-depressed behavior in mice to evaluate a novel series of MOR-selective C9-substituted phenylmorphan opioids with graded MOR efficacies. Intraperitoneal injection of dilute lactic acid (IP acid) served as a noxious stimulus to depress locomotor activity by mice in an activity chamber composed of two compartments connected by an obstructed door. Behavioral measures included (1) crosses between compartments (vertical activity over the obstruction) and (2) movement counts quantified as photobeam breaks summed across compartments (horizontal activity). Each drug was tested alone and as a pretreatment to IP acid. A charcoal-meal test and whole-body-plethysmography assessment of breathing in 5% CO2 were also used to assess gastrointestinal (GI) inhibition and respiratory depression, respectively. IP acid produced a concentration-dependent depression in crosses and movement that was optimally alleviated by intermediate- to low-efficacy phenylmorphans with sufficient efficacy to produce analgesia with minimal locomotor disruption. Follow-up studies with two low-efficacy phenylmorphans (JL-2-39 and DC-1-76.1) indicated that both drugs produced naltrexone-reversible antinociception with a rapid onset and a duration of ~1hr. Potency of both drugs increased when behavior was depressed by a lower IP-acid concentration, and neither drug alleviated behavioral depression by a non-pain stimulus (IP lithium chloride). Both drugs produced weaker GI inhibition and respiratory depression than fentanyl and attenuated fentanyl-induced GI inhibition and respiratory depression. Results support further consideration of selective, low-efficacy MOR agonists as candidate analgesics. Significance Statement This study used a novel set of mu opioid receptor (MOR)-selective opioids with graded MOR efficacies to examine the lower boundary of MOR efficacy sufficient to relieve pain-related behavioral depression in mice. Two novel low-efficacy opioids (JL-2-39, DC-1-76.1) produced effective antinociception with improved safety relative to higher- or lower-efficacy opioids, and results support further consideration of these and other low-efficacy opioids as candidate analgesics.

2.
Bioconjug Chem ; 35(2): 164-173, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38113481

RESUMO

Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qß (mQß), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQß-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQß-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQß-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.


Assuntos
Analgésicos Opioides , Heroína , Camundongos , Animais , Analgésicos Opioides/farmacologia , Heroína/química , Heroína/farmacologia , Morfina , Derivados da Morfina , Imunoglobulina G
3.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731416

RESUMO

The synthesis of stereochemically pure oximes, amines, saturated and unsaturated cyanomethyl compounds, and methylaminomethyl compounds at the C9 position in 3-hydroxy-N-phenethyl-5-phenylmorphans provided µ-opioid receptor (MOR) agonists with varied efficacy and potency. One of the most interesting compounds, (2-((1S,5R,9R)-5-(3-hydroxyphenyl)-2-phenethyl-2-azabicyclo[3.3.1]nonan-9-yl)acetonitrile), was found to be a potent partial MOR agonist (EC50 = 2.5 nM, %Emax = 89.6%), as determined in the forskolin-induced cAMP accumulation assay. Others ranged in potency and efficacy at the MOR, from nanomolar potency with a C9 cyanomethyl compound (EC50 = 0.85 nM) to its totally inactive diastereomer, and three compounds exhibited weak MOR antagonist activity (the primary amine 3, the secondary amine 8, and the cyanomethyl compound 41). Many of the compounds were fully efficacious; their efficacy and potency were affected by both the stereochemistry of the molecule and the specific C9 substituent. Most of the MOR agonists were selective in their receptor interactions, and only a few had δ-opioid receptor (DOR) or κ-opioid receptor (KOR) agonist activity. Only one compound, a C9-methylaminomethyl-substituted phenylmorphan, was moderately potent and fully efficacious as a KOR agonist (KOR EC50 = 18 nM (% Emax = 103%)).


Assuntos
Aminas , Oximas , Oximas/química , Oximas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Aminas/química , Aminas/farmacologia , Receptores Opioides mu/metabolismo , Receptores Opioides mu/agonistas , Humanos , Animais , Estrutura Molecular , Células CHO , Morfinanos/química , Morfinanos/farmacologia
4.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513283

RESUMO

The 5-(3-hydroxy)phenylmorphan structural class of compounds are unlike the classical morphinans, 4,5-epoxymorphinans, and 6,7-benzomorphans, in that they have an equatorially oriented aromatic ring rather than the axial orientation of that ring found in the classical opioids. This modified and simplified opioid-like structure has been shown to retain antinociceptive activity, depending on its stereochemistry and substituents, and some of them have been found to be much more potent than morphine. A simple C9-hydroxy-5-(3-hydroxy)phenylmorphan enantiomer was found to be about 500 times more potent than morphine in vivo. We have previously examined C9-alkenyl and hydroxyalkyl substituents in the N-phenethyl-5-(3-hydroxy)phenylmorphan class of compounds. Comparable C9-alkyl (methyl through butyl) substituents, with their sets of diastereomers, have not been explored. All these compounds have now been synthesized to determine the effect chain-length and stereochemistry at the C9 position in the molecule might have on their interaction with opioid receptors. We now report the synthesis and in vitro activity of 16 compounds, the C9-methyl, ethyl, propyl, and butyl diastereomers, using the inhibition of forskolin-induced cAMP accumulation assay. Several potent (sub-nanomolar and nanomolar) MOR compounds were found to be selective agonists with varying efficacy. Of greatest interest, a selective MOR antagonist was discovered; it did not display any DOR or KOR agonist activity in vitro, was three times more potent than naltrexone, and was found to antagonize the EC90 of fentanyl at MOR to a greater extent than naltrexone.


Assuntos
Morfinanos , Receptores Opioides mu , Receptores Opioides mu/química , Naltrexona/farmacologia , Relação Estrutura-Atividade , Morfinanos/química , Morfina , Analgésicos Opioides/farmacologia
5.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067439

RESUMO

(-)-5,9-Dimethyl-6,7-benzomorphan (normetazocine) derivatives with a para-OH or ortho-F substituent in the aromatic ring of the N-phenethyl moiety were synthesized and found to have subnanomolar potency at MOR, and both were fully efficacious in vitro. These new compounds, (1R,5R,9R)-6,11-dimethyl-3-(2-fluorophenethyl)-1,2,3,4,5,6-hexahydro-2,6-methanobenzo[d]azocin-8-ol and (1R,5R,9R)-6,11-dimethyl-3-(4-hydroxyphenethyl)-1,2,3,4,5,6-hexahydro-2,6-methanobenzo[d]azocin-8-ol, were more potent than the unsubstituted compound N-phenethylnormetazocine and about 30 or 40 times more potent than morphine, respectively. A variety of substituents in the ortho, meta, or para position in the aromatic ring of the N-phenethyl moiety were synthesized, 25 of these compounds, and found to have varying effects on potency and efficacy as determined by the forskolin-induced cAMP accumulation assay. The N-phenethyl moiety was also modified by increasing chain length to form a N-phenylpropyl side chain with and without a para-nitro moiety, and by an N-cinnamyl side chain. Also, an indole ethylamine normetazocine was synthesized to replace the N-phenethylamine side chain in normetazocine. The phenylpropylamine, propenylamine (cinnamyl) and the para-nitropropylamine had little or no MOR potency. The indole-ethylamine on the normetazocine nucleus, however, had moderate potency (MOR EC50 = 12 nM), and was fully efficacious (%Emax = 102%) in the cAMP assay. Retention of the N-phenethyl moiety and the addition of alkyl and alkenyl moieties on C8 in (-)-N-phenethylnormetazocine gave a C8-methylene derivative that had subnanomolar potency at MOR and a C8-methyl analog that had nanomolar potency. Five C8-substituted compounds were synthesized.


Assuntos
Benzomorfanos , Morfina , Benzomorfanos/química , Etilaminas , Indóis , Relação Estrutura-Atividade
6.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375350

RESUMO

All possible diastereomeric C9-hydroxymethyl-, hydroxyethyl-, and hydroxypropyl-substituted 5-phenylmorphans were synthesized to explore the three-dimensional space around the C9 substituent in our search for potent MOR partial agonists. These compounds were designed to lessen the lipophilicity observed with their C9-alkenyl substituted relatives. Many of the 12 diastereomers that were obtained were found to have nanomolar or subnanomolar potency in the forskolin-induced cAMP accumulation assay. Almost all these potent compounds were fully efficacious, and three of those chosen for in vivo evaluation, 15, 21, and 36, were all extremely G-protein biased; none of the three compounds recruited beta-arrestin2. Only one of the 12 diastereomers, 21 (3-((1S,5R,9R)-9-(2-hydroxyethyl)-2-phenethyl-2-azabicyclo[3.3.1]nonan-5-yl)phenol), was a MOR partial agonist with good, but not full, efficacy (Emax = 85%) and subnanomolar potency (EC50 = 0.91 nM) in the cAMP assay. It did not have any KOR agonist activity. This compound was unlike morphine in that it had a limited ventilatory effect in vivo. The activity of 21 could be related to one or more of three well-known theories that attempt to predict a dissociation of the desired analgesia from the undesirable opioid-like side-effects associated with clinically used opioids. In accordance with the theories, 21 was a potent MOR partial agonist, it was highly G-protein biased and did not attract beta-arrestin2, and it was found to have both MOR and DOR agonist activity. All the other diastereomers that were synthesized were either much less potent than 21 or had either too little or too much efficacy for our purposes. It was also noted that a C9-methoxymethyl compound with 1R,5S,9R stereochemistry (41) was more potent than the comparable C9-hydroxymethyl compound 11 (EC50 = 0.65 nM for 41 vs. 2.05 nM for 11). Both 41 and 11 were fully efficacious.


Assuntos
Morfinanos , Receptores Opioides mu , Morfinanos/química , Morfina , Analgésicos Opioides/química
7.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557961

RESUMO

The design of enantiopure stereoisomers of N-2-phenylcyclopropylmethyl-substituted ortho-c oxide-bridged phenylmorphans, the E and Z isomers of an N-cinnamyl moiety, and N-propyl enantiomers were based on combining the most potent oxide-bridged phenylmorphan (the ortho-c isomer) with the most potent N-substituent that we previously found with a 5-(3-hydroxy)phenylmorphan (i.e., N-2-phenylcyclopropyl methyl moieties, N-cinnamyl, and N-propyl substituents). The synthesis of the eight enantiopure N-2-phenylcyclopropylmethyl ortho-c oxide-bridged phenylmorphans and six additional enantiomers of the N-substituted ortho-c oxide-bridged phenylmorphans (N-E and Z-cinnamyl compounds, and N-propyl compounds) was accomplished. The synthesis started from common intermediates (3R,6aS,11aS)-10-methoxy-1,3,4,5,6,11a-hexahydro-2H-3,6a-methano-benzofuro[2,3-c]azocine (+)-6 and its enantiomer, (3S, 6aR, 11aR)-(-)-6, respectively. The enantiomers of ±-6 were obtained through salt formation with (S)-(+)- and (R)-(-)-p-methylmandelic acid, and the absolute configuration of the (R)-(-)-p-methylmandelate salt of (3S, 6aR, 11aR)-(-)-6 was determined by single-crystal X-ray analysis. The enantiomeric secondary amines were reacted with N-(2-phenylcyclopropyl)methyl derivatives, 2-(E)-cinnamyl bromide, and (Z)-3-phenylacrylic acid. These products led to all of the desired N-derivatives of the ortho-c oxide-bridged phenylmorphans. Their opioid receptor binding affinity was measured. The compounds with MOR affinity < 50 nM were examined for their functional activity in the forskolin-induced cAMP accumulation assay. Only the enantiomer of the N-phenethyl ortho-c oxide-bridged phenylmorphan ((-)-1), and only the (3S,6aR,11aR)-2-(((1S,2S)-2-phenylcyclopropyl)methyl)-1,3,4,5,6,11a-hexahydro-2H-3,6a-methanobenzofuro[2,3-c]azocin-10-ol isomer ((+)-17), and the N-phenylpropyl derivative ((-)-25) had opioid binding affinity < 50 nM. Both (-)-1 and (-)-25 were partial agonists in the cAMP assay, with the former showing high potency and low efficacy, and the latter with lower potency and less efficacy. Most interesting was the N-2-phenylcyclopropylmethyl (3S,6aR,11aR)-2-(1S,2S)-enantiomer ((+)-17). That compound had good MOR binding affinity (Ki = 11.9 nM) and was found to have naltrexone-like potency as a MOR antagonist (IC50 = 6.92 nM).


Assuntos
Morfinanos , Óxidos , Cristalografia por Raios X , Óxidos/química , Morfinanos/química , Isomerismo , Receptores Opioides mu
8.
Molecules ; 27(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268659

RESUMO

In our continuing effort to develop effective anti-heroin vaccines as potential medications for the treatment of opioid use disorder, herein we present the design and synthesis of the haptens: 1-AmidoMorHap (1), 1-AmidoMorHap epimer (2), 1 Amido-DihydroMorHap (3), and 1 Amido-DihydroMorHap epimer (4). This is the first report of hydrolytically stable haptenic surrogates of heroin with the attachment site at the C1 position in the 4,5-epoxymorophinan nucleus. We prepared respective tetanus toxoid (TT)-hapten conjugates as heroin vaccine immunogens and evaluated their efficacy in vivo. We showed that all TT-hapten conjugates induced high antibody endpoint titers against the targets but only haptens 2 and 3 can induce protective effects against heroin in vivo. The epimeric analogues of these haptens, 1 and 4, failed to protect mice from the effects of heroin. We also showed that the in vivo efficacy is consistent with the results of the in vitro drug sequestration assay. Attachment of the linker at the C1 position induced antibodies with weak binding to the target drugs. Only TT-2 and TT-3 yielded antibodies that bound heroin and 6-acetyl morphine. None of the TT-hapten conjugates induced antibodies that cross-reacted with morphine, methadone, naloxone, or naltrexone, and only TT-3 interacted weakly with buprenorphine, and that subtle structural difference, especially at the C6 position, can vastly alter the specificity of the induced antibodies. This study is an important contribution in the field of vaccine development against small-molecule targets, providing proof that the chirality at C6 in these epoxymorphinans is a vital key to their effectiveness.


Assuntos
Heroína
9.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234992

RESUMO

Four sets of diastereomeric C9-alkenyl 5-phenylmorphans, varying in the length of the C9-alkenyl chain, were designed to examine the effect of these spatially distinct ligands on opioid receptors. Functional activity was obtained by forskolin-induced cAMP accumulation assays and several compounds were examined in the [35S]GTPgS assay and in an assay for respiratory depression. In each of the four sets, similarities and differences were observed dependent on the length of their C9-alkenyl chain and, most importantly, their stereochemistry. Three MOR antagonists were found to be as or more potent than naltrexone and, unlike naltrexone, none had MOR, KOR, or DOR agonist activity. Several potent MOR full agonists were obtained, and, of particular interest partial agonists were found that exhibited less respiratory depression than that caused by morphine. The effect of stereochemistry and the length of the C9-alkenyl chain was also explored using molecular modeling. The MOR antagonists were found to interact with the inactive (4DKL) MOR crystal structures and agonists were found to interact with the active (6DDF) MOR crystal structures. The comparison of their binding modes at the mouse MOR was used to gain insight into the structural basis for their stereochemically induced pharmacological differences.


Assuntos
Naltrexona , Insuficiência Respiratória , Animais , Células CHO , Colforsina , Cricetinae , Ligantes , Camundongos , Morfina/farmacologia , Receptores Opioides/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo
10.
Bioconjug Chem ; 32(11): 2295-2306, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34076427

RESUMO

Opioid use disorders and fatal overdose due to consumption of fentanyl-laced heroin remain a major public health menace in the United States. Vaccination may serve as a promising potential remedy to combat accidental overdose and to mitigate the abuse potential of opioids. We previously reported the heroin and fentanyl monovalent vaccines carrying, respectively, a heroin hapten, 6-AmHap, and a fentanyl hapten, para-AmFenHap, conjugated to tetanus toxoid (TT). Herein, we describe the mixing of these antigens to formulate a bivalent vaccine adjuvanted with liposomes containing monophosphoryl lipid A (MPLA) adsorbed on aluminum hydroxide. Immunization of mice with the bivalent vaccine resulted in IgG titers of >105 against both haptens. The polyclonal sera bound heroin, 6-acetylmorphine, morphine, and fentanyl with dissociation constants (Kd) of 0.25 to 0.50 nM. Mice were protected from the anti-nociceptive effects of heroin, fentanyl, and heroin +9% (w/w) fentanyl. No cross-reactivity to methadone and buprenorphine was observed in vivo. Naloxone remained efficacious in immunized mice. These results highlighted the potential of combining TT-6-AmHap and TT-para-AmFenHap to yield an efficacious bivalent vaccine that could ablate heroin and fentanyl effects. This vaccine warrants further testing to establish its potential translatability to humans.


Assuntos
Heroína
11.
Mol Pharm ; 17(9): 3447-3460, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787282

RESUMO

Active immunization is an emerging potential modality to combat fatal overdose amid the opioid epidemic. In this study, we described the design, synthesis, formulation, and animal testing of an efficacious vaccine against fentanyl. The vaccine formulation is composed of a novel fentanyl hapten conjugated to tetanus toxoid (TT) and adjuvanted with liposomes containing monophosphoryl lipid A adsorbed on aluminum hydroxide. The linker and hapten N-phenyl-N-(1-(4-(3-(tritylthio)propanamido)phenethyl)piperidin-4-yl)propionamide were conjugated sequentially to TT using amine-N-hydroxysuccinimide-ester and thiol-maleimide reaction chemistries, respectively. Conjugation was facile, efficient, and reproducible with a protein recovery of >98% and a hapten density of 30-35 per carrier protein molecule. In mice, immunization induced high and robust antibody endpoint titers in the order of >106 against the hapten. The antisera bound fentanyl, carfentanil, cyclopropyl fentanyl, para-fluorofentanyl, and furanyl fentanyl in vitro with antibody-drug dissociation constants in the range of 0.36-4.66 nM. No cross-reactivity to naloxone, naltrexone, methadone, or buprenorphine was observed. In vivo, immunization shifted the antinociceptive dose-response curve of fentanyl to higher doses. Collectively, these preclinical results showcased the desired traits of a potential vaccine against fentanyl and demonstrated the feasibility of immunization to combat fentanyl-induced effects.


Assuntos
Fentanila/análogos & derivados , Fentanila/imunologia , Vacinas/imunologia , Analgésicos/imunologia , Animais , Anticorpos/imunologia , Overdose de Drogas/imunologia , Feminino , Haptenos/imunologia , Imunização/métodos , Lipossomos/imunologia , Camundongos , Camundongos Endogâmicos BALB C
12.
J Labelled Comp Radiopharm ; 63(13): 564-571, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32876947

RESUMO

A deuterated hapten was designed and synthesized that will be essential for a future study of residual hapten and stability of a hapten-protein conjugate. This hapten, 6-AmHap, was chosen for a heroin vaccine that is now slated for a Phase 1 clinical trial. A maleimide-thiol bioconjugation strategy was successfully applied to our heroin vaccine to connect the hapten 6-AmHap with an immunogenic carrier protein (tetanus toxoid, TT) through a trityl-protected 3-mercaptopropanamide linker. The antibodies induced by the vaccine have been found to have activity against several opioids, including heroin and its metabolites, and, importantly, leave alternate pain treatment medications such as methadone untouched. To the best of our knowledge, no other hapten for a heroin vaccine has been deuterated, yet this tool may prove to be of great importance in the study of residual hapten during product release and the long-term stability program of a hapten-protein conjugate as part of FDA regulatory requirements. Hydrocodone was the starting material for the synthesis of the deuterated 6-AmHap, with a stable amide at C6 and a 3-mercaptopropanamide linker attached at C3. The desired deuterated product was prepared as the disulfide, 3,3'-disulfanediylbis(N-((7S,7aR,12bS)-7-acetamido-3-[2 H3 ]methyl)-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-9-yl)propanamide), that could be easily reduced to form the needed hapten, N-((4aR,7S,7aR,12bS)-7-acetamido-3-[2 H3 ]methyl]-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-9-yl)-3-mercaptopropanamide.


Assuntos
Deutério/química , Haptenos/química , Haptenos/imunologia , Heroína/imunologia , Vacinas/química , Vacinas/imunologia , Preparações Farmacêuticas , Padrões de Referência
13.
Molecules ; 25(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517185

RESUMO

(-)-N-Phenethyl analogs of optically pure N-norhydromorphone were synthesized and pharmacologically evaluated in several in vitro assays (opioid receptor binding, stimulation of [35S]GTPγS binding, forskolin-induced cAMP accumulation assay, and MOR-mediated ß-arrestin recruitment assays). "Body" and "tail" interactions with opioid receptors (a subset of Portoghese's message-address theory) were used for molecular modeling and simulations, where the "address" can be considered the "body" of the hydromorphone molecule and the "message" delivered by the substituent (tail) on the aromatic ring of the N-phenethyl moiety. One compound, N-p-chloro-phenethynorhydromorphone ((7aR,12bS)-3-(4-chlorophenethyl)-9-hydroxy-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, 2i), was found to have nanomolar binding affinity at MOR and DOR. It was a potent partial agonist at MOR and a full potent agonist at DOR with a δ/µ potency ratio of 1.2 in the ([35S]GTPγS) assay. Bifunctional opioids that interact with MOR and DOR, the latter as agonists or antagonists, have been reported to have fewer side-effects than MOR agonists. The p-chlorophenethyl compound 2i was evaluated for its effect on respiration in both mice and squirrel monkeys. Compound 2i did not depress respiration (using normal air) in mice or squirrel monkeys. However, under conditions of hypercapnia (using air mixed with 5% CO2), respiration was depressed in squirrel monkeys.


Assuntos
Hidromorfona/análogos & derivados , Hipercapnia/tratamento farmacológico , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Animais , Ligação Competitiva , Hidromorfona/química , Hidromorfona/farmacologia , Hipercapnia/patologia , Camundongos , Modelos Moleculares , Ligação Proteica , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides delta/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Respiração Artificial , Saimiri , Relação Estrutura-Atividade
14.
Anal Bioanal Chem ; 410(16): 3885-3903, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29675707

RESUMO

We describe for the first time a method that utilizes microscale thermophoresis (MST) technology to determine polyclonal antibody affinities to small molecules. Using a novel type of heterologous MST, we have accurately measured a solution-based binding affinity of serum antibodies to heroin which was previously impossible with other currently available methods. Moreover, this mismatch approach (i.e., using a cross-reactive hapten tracer) has never been reported in the literature. When compared with equilibrium dialysis combined with ultra-performance liquid chromatography/tandem mass spectrometry (ED-UPLC/MS/MS), this novel MST method yields similar binding affinity values for polyclonal antibodies to the major heroin metabolites 6-AM and morphine. Additionally, we herein report the method of synthesis of this novel cross-reactive hapten, MorHap-acetamide-a useful analog for the study of heroin hapten-antibody interactions. Using heterologous MST, we were able to determine the affinities, down to nanomolar accuracies, of polyclonal antibodies to various abused opioids. While optimizing this method, we further discovered that heroin is protected from serum esterase degradation by the presence of these antibodies in a concentration-dependent manner. Lastly, using affinity data for a number of structurally different opioids, we were able to dissect the moieties that are crucial to antibody binding. The novel MST method that is presented herein can be extended to the analysis of any ligand that is prone to degradation and can be applied not only to the development of vaccines to substances of abuse but also to the analysis of small molecule/protein interactions in the presence of serum. Graphical abstract Strategy for the determination of hapten-induced antibody affinities using Microscale thermophoresis.


Assuntos
Analgésicos Opioides/imunologia , Anticorpos/imunologia , Afinidade de Anticorpos , Haptenos/imunologia , Heroína/imunologia , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Técnicas Imunológicas/métodos , Camundongos , Morfina/imunologia , Espectrometria de Massas em Tandem
15.
Bioorg Med Chem ; 25(8): 2406-2422, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28314512

RESUMO

The enantiomers of a variety of N-alkyl-, N-aralkyl-, and N-cyclopropylalkyl-9ß-hydroxy-5-(3-hydroxyphenyl)morphans were synthesized employing cyanogen bromide and K2CO3 to improve the original N-demethylation procedure. Their binding affinity to the µ-, δ-, and κ-opioid receptors (ORs) was determined and functional (GTPγ35S) assays were carried out on those with reasonable affinity. The 1R,5R,9S-enantiomers (1R,5R,9S)-(-)-5-(3-hydroxyphenyl)-2-(4-nitrophenethyl)-2-azabicyclo[3.3.1]nonan-9-ol (1R,5R,9S-16), (1R,5R,9S)-(-) 2-cinnamyl-5-(3-hydroxyphenyl)-2-azabicyclo[3.3.1]nonan-9-ol (1R,5R,9S-20), and (1R,5R,9S)-(-)-5-(3-hydroxyphenyl)-2-(4-(trifluoromethyl)phenethyl)-2-azabicyclo[3.3.1]nonan-9-ol (1R,5R,9S-15), had high affinity for the µ-opioid receptor (e.g., 1R,5R,9S-16: Ki=0.073, 0.74, and 1.99nM, respectively). The 1R,5R,9S-16 and 1R,5R,9S-15 were full, high efficacy µ-agonists (EC50=0.74 and 18.5nM, respectively) and the former was found to be a partial agonist at δ-OR and an antagonist at κ-OR, while the latter was a partial agonist at δ-OR and κ-OR in the GTPγ35S assay. The enantiomer of 1R,5R,9S-16, (+)-1S,5S,9R-16 was unusual, it had good affinity for the µ-OR (Ki=26.5nM) and was an efficacious µ-antagonist (Ke=29.1nM). Molecular dynamics simulations of the µ-OR were carried out with the 1R,5R,9S-16 µ-agonist and the previously synthesized (1R,5R,9S)-(-)-5-(9-hydroxy-5-(3-hydroxyphenyl-2-phenylethyl)-2-azabicyclo[3.3.1]nonane (1R,5R,9S-(-)-NIH 11289) to provide a structural basis for the observed high affinities and efficacies. The critical roles of both the 9ß-OH and the p-nitro group are elucidated, with the latter forming direct, persistent hydrogen bonds with residues deep in the binding cavity, and the former interacting with specific residues via highly structured water bridges.


Assuntos
Simulação por Computador , Morfinanos/síntese química , Morfinanos/farmacologia , Receptores Opioides/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Morfinanos/química , Morfinanos/metabolismo , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Receptores Opioides/metabolismo , Espectrometria de Massas por Ionização por Electrospray
16.
Anal Bioanal Chem ; 408(4): 1191-204, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26677020

RESUMO

The accurate analytical measurement of binding affinities of polyclonal antibody in sera to heroin, 6-acetylmorphine (6-AM), and morphine has been a challenging task. A simple nonradioactive method that uses deuterium-labeled drug tracers and equilibrium dialysis (ED) combined with ultra performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) to measure the apparent dissociation constant (K d) of antibodies to 6-AM and morphine is described. The method can readily detect antibodies with K d in the low nanomolar range. Since heroin is rapidly degraded in sera, esterase inhibitors were included in the assay, greatly reducing heroin hydrolysis. MS/MS detection directly measured the heroin in the assay after overnight ED, thereby allowing the quantitation of % bound heroin in lieu of K d as an alternative measurement to assess heroin binding to polyclonal antibody sera. This is the first report that utilizes a solution-based assay to quantify heroin-antibody binding without being confounded by the presence of 6-AM and morphine and to measure K d of polyclonal antibody to 6-AM. Hapten surrogates 6-AcMorHap, 6-PrOxyHap, MorHap, DiAmHap, and DiPrOxyHap coupled to tetanus toxoid (TT) were used to generate high affinity antibodies to heroin, 6-AM, and morphine. In comparison to competition ED-UPLC/MS/MS which gave K d values in the nanomolar range, the commonly used competition enzyme-linked immunosorbent assay (ELISA) measured the 50% inhibition concentration (IC50) values in the micromolar range. Despite the differences in K d and IC50 values, similar trends in affinities of hapten antibodies to heroin, 6-AM, and morphine were observed by both methods. Competition ED-UPLC/MS/MS revealed that among the five TT-hapten bioconjugates, TT-6-AcMorHap and TT-6-PrOxyHap induced antibodies that bound heroin, 6-AM, and morphine. In contrast, TT-MorHap induced antibodies that poorly bound heroin, while TT-DiAmHap and TT-DiPrOxyHap induced antibodies either did not bind or poorly bound to heroin, 6-AM, and morphine. This simple and nonradioactive method can be extended to other platforms, such as oxycodone, cocaine, nicotine, and methamphetamine for the selection of the lead hapten design during substance abuse vaccine development.


Assuntos
Haptenos/imunologia , Derivados da Morfina/sangue , Morfina/sangue , Detecção do Abuso de Substâncias/métodos , Animais , Anticorpos/química , Anticorpos/metabolismo , Afinidade de Anticorpos , Técnicas de Química Sintética , Cromatografia Líquida de Alta Pressão/métodos , Deutério , Estabilidade de Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Haptenos/química , Camundongos , Morfina/imunologia , Derivados da Morfina/imunologia , Espectrometria de Massas em Tandem
17.
Bioconjug Chem ; 26(6): 1041-53, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25970207

RESUMO

Vaccines against drugs of abuse have induced antibodies in animals that blocked the biological effects of the drug by sequestering the drug in the blood and preventing it from crossing the blood-brain barrier. Drugs of abuse are too small to induce antibodies and, therefore, require conjugation of drug hapten analogs to a carrier protein. The efficacy of these conjugate vaccines depends on several factors including hapten design, coupling strategy, hapten density, carrier protein selection, and vaccine adjuvant. Previously, we have shown that 1 (MorHap), a heroin/morphine hapten, conjugated to tetanus toxoid (TT) and mixed with liposomes containing monophosphoryl lipid A [L(MPLA)] as adjuvant, partially blocked the antinociceptive effects of heroin in mice. Herein, we extended those findings, demonstrating greatly improved vaccine induced antinociceptive effects up to 3% mean maximal potential effect (%MPE). This was obtained by evaluating the effects of vaccine efficacy of hapten 1 vaccine conjugates with varying hapten densities using two different commonly used carrier proteins, TT and cross-reactive material 197 (CRM197). Immunization of mice with these conjugates mixed with L(MPLA) induced very high anti-1 IgG peak levels of 400-1500 µg/mL that bound to both heroin and its metabolites, 6-acetylmorphine and morphine. Except for the lowest hapten density for each carrier, the antibody titers and affinity were independent of hapten density. The TT carrier based vaccines induced long-lived inhibition of heroin-induced antinociception that correlated with increasing hapten density. The best formulation contained TT with the highest hapten density of ≥30 haptens/TT molecule and induced %MPE of approximately 3% after heroin challenge. In contrast, the best formulation using CRM197 was with intermediate 1 densities (10-15 haptens/CRM197 molecule), but the %MPE was approximately 13%. In addition, the chemical synthesis of 1, the optimization of the conjugation method, and the methods for the accurate quantification of hapten density are described.


Assuntos
Analgésicos Opioides/imunologia , Proteínas de Bactérias/química , Portadores de Fármacos/química , Haptenos/administração & dosagem , Heroína/imunologia , Toxoide Tetânico/química , Vacinas Conjugadas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Afinidade de Anticorpos , Cristalografia por Raios X , Feminino , Haptenos/química , Haptenos/imunologia , Haptenos/farmacologia , Heroína/farmacologia , Dependência de Heroína/imunologia , Dependência de Heroína/prevenção & controle , Imunização , Imunoglobulina G/imunologia , Lipídeo A/administração & dosagem , Lipídeo A/análogos & derivados , Lipídeo A/imunologia , Camundongos Endogâmicos BALB C , Modelos Moleculares , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/farmacologia
18.
Chirality ; 27(4): 287-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25727807

RESUMO

Illicit rac-MDPV (3,4-methylenedioxypyrovalerone), manufactured in clandestine labs, has become widely abused for its cocaine-like stimulant properties. It has recently been found as one of the toxic materials in the so-called "bath salts," producing, among other effects, psychosis and tachycardia in humans when introduced by any of the several routes of administration (e.g., intravenous, oral, etc.). The considerable toxicity of this "designer drug" probably resides in one of the enantiomers of the racemate. In order to obtain a sufficient amount of the enantiomers of rac-MDPV to determine their activity, we improved the known synthesis of rac-MDPV and found chemical resolving agents, (+)- and (-)-2'-bromotetranilic acid, that gave the MDPV enantiomers in >96% enantiomeric excess as determined by (1) H nuclear magnetic resonance and chiral high-performance liquid chromatography. The absolute stereochemistry of these enantiomers was determined by single-crystal X-ray diffraction studies.


Assuntos
Benzodioxóis/química , Drogas Desenhadas/química , Psicotrópicos/química , Pirrolidinas/química , Benzodioxóis/análise , Benzodioxóis/isolamento & purificação , Drogas Desenhadas/análise , Drogas Desenhadas/isolamento & purificação , Ácido Clorídrico/química , Limite de Detecção , Psicotrópicos/análise , Psicotrópicos/isolamento & purificação , Pirrolidinas/análise , Pirrolidinas/isolamento & purificação , Estereoisomerismo , Catinona Sintética
19.
J Org Chem ; 79(11): 5007-18, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24773391

RESUMO

10-Nornaltrexones (3-(cyclopropylmethyl)-4a,9-dihydroxy-2,3,4,4a,5,6-hexahydro-1H-benzofuro[3,2-e]isoquinolin-7(7aH)-one, 1) have been underexploited in the search for better opioid ligands, and their enantiomers have been unexplored. The synthesis of trans-isoquinolinone 2 (4-aH, 9-O-trans-9-methoxy-3-methyl-2,3,4,4a,5,6-hexahydro-1H-benzofuro[3,2-e]isoquinolin-7(7aH)-one) was achieved through a nonchromatographic optimized synthesis of the intermediate pyridinyl compound 12. Optical resolution was carried out on 2, and each of the enantiomers were used in efficient syntheses of the "unnatural" 4aR,7aS,12bR-(+)-1) and its "natural" enantiomer (-)-1. Addition of a 14-hydroxy (the 4a-hydroxy) group in the enantiomeric isoquinolinones, (+)- and (-)-2), gave (+)- and (-)-10-nornaltrexones. A structurally unique tetracyclic enamine, (12bR)-7,9-dimethoxy-3-methyl-1,2,3,7-tetrahydro-7,12b-methanobenzo[2,3]oxocino[5,4-c]pyridine, was found as a byproduct in the syntheses and offers a different opioid-like skeleton for future study.


Assuntos
Analgésicos Opioides/química , Analgésicos Opioides/síntese química , Benzofuranos/síntese química , Isoquinolinas/síntese química , Naltrexona/análogos & derivados , Naltrexona/síntese química , Oxocinas/síntese química , Piridinas/síntese química , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/química , Benzofuranos/química , Isoquinolinas/química , Estrutura Molecular , Naltrexona/química , Oxocinas/química , Piridinas/química , Estereoisomerismo , Relação Estrutura-Atividade
20.
Org Biomol Chem ; 12(37): 7211-32, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24995943

RESUMO

Three haptens have been synthesized with linkers for attachment to carrier macromolecules at either the piperidino-nitrogen or via an introduced 3-amino group. Two of the haptens, with a 2-oxopropyl functionality at either C6, or at both the C3 and C6 positions on the 4,5-epoxymorphinan framework, as well as the third hapten (DiAmHap) with diamido moieties at both the C3 and C6 positions, should be much more stable in solution, or in vivo in a vaccine, than a hapten with an ester in one of those positions, as found in many heroin-based haptens. A "classical" opioid synthetic scheme enabled the formation of a 3-amino-4,5-epoxymorphinan which could not be obtained using palladium chemistry. Our vaccines are aimed at the reduction of the abuse of heroin and, as well, at the reduction of the effects of its predominant metabolites, 6-acetylmorphine and morphine. One of the haptens, DiAmHap, has given interesting results in a heroin vaccine and is clearly more suited for the purpose than the other two haptens.


Assuntos
Haptenos/imunologia , Heroína/imunologia , Vacinas/síntese química , Vacinas/imunologia , Animais , Feminino , Haptenos/química , Heroína/química , Dependência de Heroína/imunologia , Dependência de Heroína/prevenção & controle , Dependência de Heroína/terapia , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Vacinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA