Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Langmuir ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979641

RESUMO

This study involves the synthesis and comparison of zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8 and ZIF-67 pristine with a commercial zeolite, emphasizing their CO2 affinity and sorption capability. To overcome challenges persisting in the handling and integration of these materials into industrial adsorption processes, particularly when limited to microcrystalline fine powders, we present herein an innovative manufacturing method to produce standalone monolithic supports. This process involves pseudoplastic paste formulations utilizing polyethylenimine (PEI) as a coagulant and locally fabricated phosphorylated cellulose nanofiber (PCNF) as a binding agent. Rheological investigation was conducted to anticipate the required shaping and design by means of paste flowability, consistency, and stiffness. XRD and FTIR results confirm the preservation of crystalline structure and the occurrence of amine functionalization associated with the presence of PEI, respectively. The proposed method significantly enhances the CO2 adsorption performance of the produced ZIF-8 monolith in comparison with that reached when using the pristine material, achieving a capacity of 1.25-2 mmol·g-1 at 30 °C under dry conditions in a pressure range of 1-13 bar, respectively. In other words, this work clearly highlights an effective applicability of the ZIF-8 monolith as an innovative sorbent for further designing CO2 capture industrial setups.

2.
Molecules ; 29(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893443

RESUMO

Although disubstituted imidazolium cation is sterically crowded, hundreds of ionic liquids based on this cation have been reported as electrolytes for energy storage devices. In contrast to disubstituted imidazolium, non-substituted imidazolium is uncrowded sterically and has not yet been investigated as an electrolyte, to the best of our knowledge. Hence, imidazolium hydrogen sulfate [Imi][HSO4], in mixture with water, was studied as an electrolyte for PANI-based electrode materials. For comparison, pyrrolidinium with hydrogen sulfate or p-toluene sulfonate ([Pyrr][HSO4] or [Pyrr][PTS]), in mixture with water, were also investigated as alternatives to the conventional electrolyte (i.e., aqueous H2SO4) for PANI electrodes. Walden plots of binary mixture ionic liquid-water weight ratios with the optimal ionic conductivity (i.e., [Imi][HSO4]/water 48/52 wt% (195.1 mS/cm), [Pyrr][HSO4]/water 41/59 wt% (186.6 mS/cm), and [Pyrr][PTS]/water 48/52 wt% (43.4 mS/cm) along with the electrochemical performances of PANI in these binary mixtures showed that [Pyrr][HSO4]aq or [Imi][HSO4]aq are convenient electrolytes for PANI/PIL, as opposed to [Pyrr][PTS]aq. Furthermore, replacing the conventional aqueous electrolyte H2SO4 with [Imi][HSO4] aq increased the specific capacitance of PANI/PIL from 249.8 to 268.5 F/g at 15 mV/s. Moreover, PANI/PIL electrodes displayed a quasi-ideal capacitive behavior in [Imi][HSO4]aq (the correction factor of CPE4 was 0.99). This primary study has shown that non-substituted imidazolium as an electrolyte could enhance the electrochemical performances of PANI electrodes and could be a good alternative to the conventional electrolyte.

3.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110672

RESUMO

In this study, low-cost pomelo peel wastes were used as a bio-sorbent to remove copper ions (e.g., Cu(II)) from aqueous solutions. Prior to testing its Cu(II) removal capability, the structural, physical and chemical characteristics of the sorbent were examined by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, and Brunauer-Emmett-Teller (BET) surface area analysis. The impacts of the initial pH, temperature, contact time and Cu(II) feed concentration on the Cu(II) biosorption using modified pomelo peels were then assessed. Thermodynamic parameters associated to the biosorption clearly demonstrate that this biosorption is thermodynamically feasible, endothermic, spontaneous and entropy driven. Furthermore, adsorption kinetic data were found to fit very well with the pseudo-second order kinetics equation, highlighting that this process is driven by a chemical adsorption. Finally, an artificial neural network with a 4:9:1 structure was then established for describing the Cu(II) adsorption using modified pomelo peels with R2 values close to 0.9999 and to 0.9988 for the training and testing sets, respectively. The results present a big potential use of the as-prepared bio-sorbent for the removal of Cu(II), as well as an efficient green technology for ecological and environmental sustainability.

4.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903655

RESUMO

A small library of 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one derivatives was prepared in good to excellent yields, involving a Ag2CO3/TFA-catalyzed intramolecular oxacyclization of N-Boc-2-alkynylbenzimidazole substrates. In all experiments, the 6-endo-dig cyclization was exclusively achieved since the possible 5-exo-dig heterocycle was not observed, indicating the high regioselectivity of this process. The scope and limitations of the silver catalyzed 6-endo-dig cyclization of N-Boc-2-alkynylbenzimidazoles as substrates, bearing various substituents, were investigated. While ZnCl2 has shown limits for alkynes with an aromatic substituent, Ag2CO3/TFA demonstrated its effectiveness and compatibility regardless of the nature of the starting alkyne (aliphatic, aromatic or heteroaromatic), providing a practical regioselective access to structurally diverse 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-ones in good yields. Moreover, the rationalization of oxacyclization selectivity in favor of 6-endo-dig over 5-exo-dig was explained by a complementary computational study.

5.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836799

RESUMO

It is very well known that traditional artificial neural networks (ANNs) are prone to falling into local extremes when optimizing model parameters. Herein, to enhance the prediction performance of Cu(II) adsorption capacity, a particle swarm optimized artificial neural network (PSO-ANN) model was developed. Prior to predicting the Cu(II) adsorption capacity of modified pomelo peels (MPP), experimental data collected by our research group were used to build a consistent database. Then, a PSO-ANN model was established to enhance the model performance by optimizing the ANN's weights and biases. Finally, the performances of the developed ANN and PSO-ANN models were deeply evaluated. The results of this investigation revealed that the proposed hybrid method did increase both the generalization ability and the accuracy of the predicted data of the Cu(II) adsorption capacity of MPPs when compared to the conventional ANN model. This PSO-ANN model thus offers an alternative methodology for optimizing the adsorption capacity prediction of heavy metals using agricultural waste biosorbents.

6.
Org Biomol Chem ; 20(7): 1518-1531, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35112683

RESUMO

A series of 2,7-disubstituted 3-methylimidazo[1,2-c][1,3]oxazin-5-ones were synthesized in good yields via Ag2CO3/TFA-mediated intramolecular annulation of N-Boc-2-alkynyl-4-bromo(alkynyl)-5-methylimidazoles. This methodology was carried out in the presence of a catalytic amount of silver carbonate and trifluoroacetic acid in dichloroethane at 60 °C. In all experiments, only the six-membered ring product was obtained since the possible five-membered compound was not observed, proving the high regioselectivity of this approach. A complementary computational study was performed in order to rationalize the mechanism of 6-endo-dig heterocycle formation. In addition, 2-bromo-3-methyl-7-phenylimidazo[1,2-c][1,3]oxazin-5-one was used as a building block to synthesize a small library of new 2-substituted imidazo[1,2-c][1,3]oxazin-5-one derivatives through the Suzuki, Sonogashira and Heck cross coupling reactions.

7.
Org Biomol Chem ; 20(48): 9684-9697, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36416338

RESUMO

A variety of novel disubstituted 2-(alknyl, aryl and arylamine)-6-alkynylpyrazolo[1,5-a]pyrimidine derivatives was prepared via sequential site-selective cross-coupling reactions from 2,6-dibromopyrazolo[1,5-a]pyrimidine 3. The regio-controlled Sonogashira-type coupling of 3 with a wide range of terminal alkynes proceeded smoothly with excellent selectivity in favor of the C6-position through careful adjustment of the coupling conditions, followed by the subsequent introduction of alkynyl, aryl or arylamine groups at the C2-position via the Sonogashira, Suzuki-Miyaura and Buchwald-Hartwig coupling reactions, respectively. These promising results allow for further use and diversification of the chemically and biologically interesting pyrazolo[1,5-a]pyrimidine scaffold. In addition, computational studies were conducted to provide explanations for the origin of regioselectivity.


Assuntos
Alcinos , Pirimidinas , Catálise , Ácidos Carboxílicos
8.
Phys Chem Chem Phys ; 24(36): 22181-22190, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36093723

RESUMO

Ionanofluids (INFs), nanoparticles dispersed into a base fluid, e.g. an ionic liquid, are a novel class of alternative heat transfer fluids. Addition of nanoparticles to a base ionic liquid is the prime reason for an enhancement in the thermophysical properties of ionanofluids. However, due to very limited research on ionanofluids, further studies are required to understand changes in the isobaric heat capacity of ionanofluids as a function of size of cations of the base ionic liquid structure and concentration of nanoparticles. Herein, isobaric heat capacity was measured as a function of temperature for the prepared ionanofluid samples from a series of imidazolium ionic liquids and multi walled carbon nanotubes (MWCNTs). Moreover, the influence of the size of cations on the isobaric heat capacity enhancement mechanism and the stability of ionanofluid samples was studied. Furthermore, experimental isobaric heat capacity data were assessed by a novel non-statistical data analysis method named mathematical gnostics (MG). MG marginal analysis was used to evaluate the most probable values from the measured data set. A robust linear regression along a gnostic influence function was also used to find the best fit to correlate the measured data.

9.
Mar Drugs ; 20(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36286424

RESUMO

The growing demand for molecules of interest from microalgal biomass, such as phycobiliproteins, has led to an accumulation of unused by-products. For example, phycocyanin, obtained by the extraction of Spirulina, generated cakes rich in non-polar molecules of interest, such as free fatty acids (FFAs). These FFAs were generally considered as markers of lipidome degradation, but represented a relevant alternative to topical antibiotics, based on a biomimetic approach. In order to develop a sustainable Spirulina biorefinery scheme, different pretreatments and alternative solvents were screened to identify the best combination for the valorization of FFAs. Thus, five pre-treatments were studied including a phycocyanin extraction by-product. The following three biobased solvents were selected: ethyl acetate (EtOAc), dimethyl carbonate (DMC) and a fatty acid-based natural deep eutectic solvent (NaDES). The pigment and fatty acid profiles were established by spectroscopic and chromatographic approaches. NaDES demonstrated superior extraction capacity and selectivity compared to other biobased solvents, regardless of pretreatment. In contrast, EtOAc and DMC showed a greater diversity of FFAs, with a predominance of polyunsaturated fatty acids (PUFAs). The by-product has also been highlighted as a relevant raw material facilitating the recovery of FFAs. These results pave the way for a green biorefinery of the lipid fraction and phycobiliproteins of microalgae.


Assuntos
Microalgas , Spirulina , Solventes/química , Ficocianina , Ácidos Graxos não Esterificados , Solventes Eutéticos Profundos , Ficobiliproteínas , Ácidos Graxos , Antibacterianos
10.
Pure Appl Chem ; 93(7)2021.
Artigo em Inglês | MEDLINE | ID: mdl-37965527

RESUMO

This article is the first of three projected IUPAC Technical Reports resulting from IUPAC Project 2011-037-2-100 (Reference Materials for Phase Equilibrium Studies). The goal of that project was to select reference systems with critically evaluated property values for the validation of instruments and techniques used in phase equilibrium studies for mixtures. This Report proposes seven systems for liquid-liquid equilibrium studies, covering the four most common categories of binary mixtures: aqueous systems of moderate solubility, non-aqueous systems, systems with low solubility, and systems with ionic liquids. For each system, the available literature sources, accepted data, smoothing equations, and estimated uncertainties are given.

11.
Pure Appl Chem ; 93(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924633

RESUMO

Scientific projects frequently involve measurements of thermophysical, thermochemical, and other related properties of chemical compounds and materials. These measured property data have significant potential value for the scientific community, but incomplete and inaccurate reporting often hampers their utilization. The present IUPAC Technical Report summarizes the needs of chemical engineers and researchers as consumers of these data and shows how publishing practices can improve information transfer. In the Report, general principles of Good Reporting Practice are developed together with examples illustrating typical cases of reporting issues. Adoption of these principles will improve the quality, reproducibility, and usefulness of experimental data, bring a better level of consistency to results, and increase the efficiency and impact of research. Closely related to Good Reporting Practice, basic elements of Good Research Practice are also introduced with a goal to reduce the number of ambiguities and unresolved problems within the thermophysical property data domain.

12.
Chemphyschem ; 21(13): 1369-1374, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32421223

RESUMO

The interactions between aprotonic tetrabutylphosphonium carboxylate ionic liquids (ILs), [P4 4 4 4 ][Cn COO] (n=1, 2 and 7), and water were investigated. The cation-anion interactions occur via the α-1 H on [P4 4 4 4 ]+ and the carboxylate headgroup of the anion. Upon addition, H2 O localises around the carboxylate headgroups, inducing an electron inductive effect towards the oxygens, leading to ion-pair separation. Studies with D2 O and [P4 4 4 4 ][Cn COO] revealed protic behaviour of the systems, with proton/deuterium exchange occurring at the α-1 H of the cation, promoted by the basicity of the anion, forming an intermediate ylide. The greater influence of van der Waals forces of the [P4 4 4 4 ][C7 COO] system allows for re-orientation of the ions through larger interdigitation. The protic behaviour of the neat ILs allows for CO2 to be chemically absorbed on the ylide intermediate, forming a phosphonium-carboxylate zwitterion, signifying proton exchange occurs even in the absence of H2 O. The absorption of CO2 in equimolar IL-H2 O mixtures forms a hydrogen carbonate, through a proposed reaction of the CO2 with an intermediate hydroxide, and carboxylic acid.

13.
Molecules ; 25(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182328

RESUMO

Since their conception, ionic liquids (ILs) have been investigated for an extensive range of applications including in solvent chemistry, catalysis, and electrochemistry. This is due to their designation as designer solvents, whereby the physiochemical properties of an IL can be tuned for specific applications. This has led to significant research activity both by academia and industry from the 1990s, accelerating research in many fields and leading to the filing of numerous patents. However, while ILs have received great interest in the patent literature, only a limited number of processes are known to have been commercialised. This review aims to provide a perspective on the successful commercialisation of IL-based processes, to date, and the advantages and disadvantages associated with the use of ILs in industry.


Assuntos
Eletroquímica/métodos , Líquidos Iônicos/química , Fotoquímica/métodos , Solventes/química , Ânions , Catálise , Cátions , Cloro/química , Dimerização , Flúor/química , Hidrogênio/química , Indústrias/métodos , Metilação , Modelos Químicos , Compostos Orgânicos/química , Temperatura
14.
Molecules ; 25(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532028

RESUMO

The increasing need in the development of storage devices is calling for the formulation of alternative electrolytes, electrochemically stable and safe over a wide range of conditions. To achieve this goal, electrolyte chemistry must be explored to propose alternative solvents and salts to the current acetonitrile (ACN) and tetraethylammonium tetrafluoroborate (Et4NBF4) benchmarks, respectively. Herein, phenylacetonitrile (Ph-ACN) has been proposed as a novel alternative solvent to ACN in supercapacitors. To establish the main advantages and drawbacks of such a substitution, Ph-ACN + Et4NBF4 blends were formulated and characterized prior to being compared with the benchmark electrolyte and another alternative electrolyte based on adiponitrile (ADN). While promising results were obtained, the low Et4NBF4 solubility in Ph-ACN seems to be the main limiting factor. To solve such an issue, an ionic liquid (IL), namely 1-ethyl-3-methylimidazolium bis [(trifluoromethyl)sulfonyl] imide (EmimTFSI), was proposed to replace Et4NBF4. Unsurprisingly, the Ph-ACN + EmimTFSI blend was found to be fully miscible over the whole range of composition giving thus the flexibility to optimize the electrolyte formulation over a large range of IL concentrations up to 4.0 M. The electrolyte containing 2.7 M of EmimTFSI in Ph-ACN was identified as the optimized blend thanks to its interesting transport properties. Furthermore, this blend possesses also the prerequisites of a safe electrolyte, with an operating liquid range from at least -60 °C to +130 °C, and operating window of 3.0 V and more importantly, a flash point of 125 °C. Finally, excellent electrochemical performances were observed by using this electrolyte in a symmetric supercapacitor configuration, showing another advantage of mixing an ionic liquid with Ph-ACN. We also supported key structural descriptors by density functional theory (DFT) and COnductor-like Screening Model for Real Solvents (COSMO-RS) calculations, which can be associated to physical and electrochemical properties of the resultant electrolytes.


Assuntos
Acetonitrilas/química , Capacitância Elétrica , Eletrodos , Eletrólitos/química , Líquidos Iônicos/química , Compostos de Tetraetilamônio/química , Solubilidade
15.
Chem Rev ; 117(5): 3883-3929, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28177233

RESUMO

A complete review of the literature data on the speed of sound and ultrasound absorption in pure ionic liquids (ILs) is presented. Apart of the analysis of data published to date, the significance of the speed of sound in ILs is regarded. An analysis of experimental methods described in the literature to determine the speed of sound in ILs as a function of temperature and pressure is reported, and the relevance of ultrasound absorption in acoustic investigations is discussed. Careful attention was paid to highlight possible artifacts, and side phenomena related to the absorption and relaxation present in such measurements. Then, an overview of existing data is depicted to describe the temperature and pressure dependences on the speed of sound in ILs, as well as the impact of impurities in ILs on this property. A relation between ions structure and speeds of sound is presented by highlighting existing correlation and evaluative methods described in the literature. Importantly, a critical analysis of speeds of sound in ILs vs those in classical molecular solvents is presented to compare these two classes of compounds. The last part presents the importance of acoustic investigations for chemical engineering design and possible industrial applications of ILs.

16.
J Chem Phys ; 150(4): 044504, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709305

RESUMO

The aim of this work is to analyze in detail the effect of the alkyl chain length on the dynamics of glass-forming propylene carbonate (PC) derivatives. Examined samples are low-molecular weight derivatives of the PC structure, i.e., the 4-alkyl-1,3-dioxolan-2-one series, modified by changing the alkyl substituent from methyl to hexyl. The molecular dynamics (MD) has been analyzed based on experimental data collected from differential scanning calorimetry, broadband dielectric spectroscopy (BDS), X-ray diffraction (XRD), and nuclear magnetic resonance relaxometry measurements as well as MD simulations. The dielectric results show in samples with the propyl- or longer carbon chain the presence of slow Debye-like relaxation with features similar to those found in associative materials. Both XRD and MD reveal differences in the intermolecular structure between PC and 4-butyl-1,3-dioxolan-2-one liquids. Moreover, MD shows that the probability of finding one terminal carbon atom of the side chain of BPC in the vicinity of another carbon atom of the same type is much higher than in the case of PC. It suggests that there is a preference for longer hydrocarbon chains to set themselves close to each other. Consequently, the observed slow-mode peak may be caused by movement of aggregates maintained by van der Waals interactions. Reported herein, findings provide a new insight into the molecular origin of Debye-like relaxation.

17.
Chemphyschem ; 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30251454

RESUMO

This work provides a study based on acyclic and cyclic sulfonium ionic liquids (ILs) with alkyl and ether-functionality on the cation paired with the bis{(trifluoromethyl)sulfonyl}imide, [TFSI]- , or the bis(fluorosulfonyl)imide, [FSI]- , as the counter anion. Herein, thermophysical characterisation of nine sulfonium-based ILs concerning the density, viscosity and conductivity and thermal properties including phase transition behaviour and decomposition temperature is reported. The electrochemical stability of the ILs was also measured by cyclic voltammetry at a glassy carbon macro-disk electrode. All of the ILs showed low melting point, low viscosity and good conductivity and could serve as potential electrolytes for energy storage devices.

18.
Chemphyschem ; 18(15): 2040-2057, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28521081

RESUMO

A series of hydrophobic room temperature ionic liquids (ILs) based on ethereal functionalised pyrrolidinium, piperidinium and azepanium cations bearing the bis[(trifluoromethyl)sulfonyl]imide, [TFSI]- , anion were synthesized and characterized. Their physicochemical properties such as density, viscosity and electrolytic conductivity, and thermal properties including phase transition behaviour and decomposition temperature have been measured. All of the ILs showed low melting point, low viscosity and good conductivity and the latter properties have been discussed in terms of the IL fragility, an important electrolyte feature of the transport properties of glass-forming ILs. Furthermore, the studied [TFSI]- -based ILs generally exhibit good electrochemical stabilities and, by coupling electrochemical experiments and DFT calculations, the effect of ether functionalisation at the IL cation on the electrochemical stability of the IL is discussed. Preliminary investigations into the Li-redox chemistry at a Cu working electrode are also reported as a function of ether-functionality within the pyrrolidinium-based IL family. Overall, the results show that these ionic liquids are suitable for electrochemical devices such as battery systems, fuel cells or supercapacitors.

19.
Phys Chem Chem Phys ; 19(22): 14306-14318, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537605

RESUMO

This study reports on understanding the formation of bubbles in ionic liquids (ILs), with a view to utilising ILs more efficiently in gas capture processes. In particular, the impact of the IL structure on the bubble sizes obtained has been determined in order to obtain design principles for the ionic liquids utilised. 11 ILs were used in this study with a range of physico-chemical properties in order to determine parametrically the impact on bubble size due to the liquid properties and chemical moieties present. The results suggest the bubble size observed is dictated by the strength of interaction between the cation and anion of the IL and, therefore, the mass transport within the system. This bubble size - ILs structure-physical property relationship has been illustrated using a series of QSPR correlations. A predictive model based only on the sigma profiles of the anions and cations has been developed which shows the best correlation without the need to incorporate the physico-chemical properties of the liquids. Depending on the IL, selected mean bubble sizes observed were between 56.1 and 766.9 µm demonstrating that microbubbles can be produced in the IL allowing the potential for enhanced mass transport and absorption kinetics in these systems.

20.
Chemphyschem ; 17(23): 3992-4002, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27717151

RESUMO

During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis{(trifluoromethyl)sulfonyl}imide, [NTf2 ]- anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window, along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity, and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA