Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 40(7)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950177

RESUMO

SUMMARY: Effective collaboration between developers of Bayesian inference methods and users is key to advance our quantitative understanding of biosystems. We here present hopsy, a versatile open-source platform designed to provide convenient access to powerful Markov chain Monte Carlo sampling algorithms tailored to models defined on convex polytopes (CP). Based on the high-performance C++ sampling library HOPS, hopsy inherits its strengths and extends its functionalities with the accessibility of the Python programming language. A versatile plugin-mechanism enables seamless integration with domain-specific models, providing method developers with a framework for testing, benchmarking, and distributing CP samplers to approach real-world inference tasks. We showcase hopsy by solving common and newly composed domain-specific sampling problems, highlighting important design choices. By likening hopsy to a marketplace, we emphasize its role in bringing together users and developers, where users get access to state-of-the-art methods, and developers contribute their own innovative solutions for challenging domain-specific inference problems. AVAILABILITY AND IMPLEMENTATION: Sources, documentation and a continuously updated list of sampling algorithms are available at https://jugit.fz-juelich.de/IBG-1/ModSim/hopsy, with Linux, Windows and MacOS binaries at https://pypi.org/project/hopsy/.


Assuntos
Algoritmos , Linguagens de Programação , Software , Teorema de Bayes , Método de Monte Carlo , Cadeias de Markov , Biologia Computacional/métodos
2.
Metab Eng ; 83: 137-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582144

RESUMO

Metabolic reaction rates (fluxes) play a crucial role in comprehending cellular phenotypes and are essential in areas such as metabolic engineering, biotechnology, and biomedical research. The state-of-the-art technique for estimating fluxes is metabolic flux analysis using isotopic labelling (13C-MFA), which uses a dataset-model combination to determine the fluxes. Bayesian statistical methods are gaining popularity in the field of life sciences, but the use of 13C-MFA is still dominated by conventional best-fit approaches. The slow take-up of Bayesian approaches is, at least partly, due to the unfamiliarity of Bayesian methods to metabolic engineering researchers. To address this unfamiliarity, we here outline similarities and differences between the two approaches and highlight particular advantages of the Bayesian way of flux analysis. With a real-life example, re-analysing a moderately informative labelling dataset of E. coli, we identify situations in which Bayesian methods are advantageous and more informative, pointing to potential pitfalls of current 13C-MFA evaluation approaches. We propose the use of Bayesian model averaging (BMA) for flux inference as a means of overcoming the problem of model uncertainty through its tendency to assign low probabilities to both, models that are unsupported by data, and models that are overly complex. In this capacity, BMA resembles a tempered Ockham's razor. With the tempered razor as a guide, BMA-based 13C-MFA alleviates the problem of model selection uncertainty and is thereby capable of becoming a game changer for metabolic engineering by uncovering new insights and inspiring novel approaches.


Assuntos
Teorema de Bayes , Isótopos de Carbono , Escherichia coli , Isótopos de Carbono/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Análise do Fluxo Metabólico/métodos , Modelos Biológicos , Engenharia Metabólica/métodos , Marcação por Isótopo
3.
PLoS Comput Biol ; 19(8): e1011378, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566638

RESUMO

Thinning is a sub-sampling technique to reduce the memory footprint of Markov chain Monte Carlo. Despite being commonly used, thinning is rarely considered efficient. For sampling constraint-based models, a highly relevant use-case in systems biology, we here demonstrate that thinning boosts computational and, thereby, sampling efficiencies of the widely used Coordinate Hit-and-Run with Rounding (CHRR) algorithm. By benchmarking CHRR with thinning with simplices and genome-scale metabolic networks of up to thousands of dimensions, we find a substantial increase in computational efficiency compared to unthinned CHRR, in our examples by orders of magnitude, as measured by the effective sample size per time (ESS/t), with performance gains growing with polytope (effective network) dimension. Using a set of benchmark models we derive a ready-to-apply guideline for tuning thinning to efficient and effective use of compute resources without requiring additional coding effort. Our guideline is validated using three (out-of-sample) large-scale networks and we show that it allows sampling convex polytopes uniformly to convergence in a fraction of time, thereby unlocking the rigorous investigation of hitherto intractable models. The derivation of our guideline is explained in detail, allowing future researchers to update it as needed as new model classes and more training data becomes available. CHRR with deliberate utilization of thinning thereby paves the way to keep pace with progressing model sizes derived with the constraint-based reconstruction and analysis (COBRA) tool set. Sampling and evaluation pipelines are available at https://jugit.fz-juelich.de/IBG-1/ModSim/fluxomics/chrrt.


Assuntos
Algoritmos , Modelos Biológicos , Biologia de Sistemas/métodos , Redes e Vias Metabólicas , Genoma
4.
Bioinformatics ; 38(2): 566-567, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34329395

RESUMO

SUMMARY: Random flux sampling is a powerful tool for the constraint-based analysis of metabolic networks. The most efficient sampling method relies on a rounding transform of the constraint polytope, but no available rounding implementation can round all relevant models. By removing redundant polytope constraints on the go, PolyRound simplifies the numerical problem and rounds all the 108 models in the BiGG database without parameter tuning, compared to ∼50% for the state-of-the-art implementation. AVAILABILITY AND IMPLEMENTATION: The implementation is available on gitlab: https://gitlab.com/csb.ethz/PolyRound. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Redes e Vias Metabólicas , Projetos de Pesquisa , Bases de Dados Factuais , Software
5.
Bioinformatics ; 37(12): 1776-1777, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33045081

RESUMO

SUMMARY: The C++ library Highly Optimized Polytope Sampling (HOPS) provides implementations of efficient and scalable algorithms for sampling convex-constrained models that are equipped with arbitrary target functions. For uniform sampling, substantial performance gains were achieved compared to the state-of-the-art. The ease of integration and utility of non-uniform sampling is showcased in a Bayesian inference setting, demonstrating how HOPS interoperates with third-party software. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/modsim/hops/, tested on Linux and MS Windows, includes unit tests, detailed documentation, example applications and a Dockerfile. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bibliotecas , Software , Algoritmos , Teorema de Bayes , Biblioteca Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA