Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 64(1): 42-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37612794

RESUMO

Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R. solanacearum colony. In the beginning, twitching motility in the microcolonies was observed as a density-dependent phenomenon that influences the shape of the microcolonies. No such phenomenon was observed in Escherichia coli, where twitching motility is absent. In the early phase of colony growth, twitching motility exhibited by the cells at the peripheral region of the colony was more prominent than the cells toward the center of the colony. Using time-lapse photography and merging the obtained photomicrographs into a video, twitching motility was observed as an intermittent phenomenon that progresses in layers in all directions as finger-like projections at the peripheral region of a bacterial colony. Each layer of bacteria twitches on top of the other and produces a multilayered film-like appearance. We found that the duration between the emergence of each layer diminishes progressively as the colony becomes older. This study on twitching motility demonstrates distinctly heterogeneity among the cells within a colony regarding their dynamics and the influence of microcolonies on each other regarding their morphology.


Assuntos
Ralstonia solanacearum , Fímbrias Bacterianas , Virulência , Doenças das Plantas/microbiologia
2.
Mol Divers ; 27(5): 1979-1999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36190592

RESUMO

Acinetobacter baumannii belongs to the ESKAPE family of pathogens and is a multi-drug resistant, gram-negative bacteria which follows the anaerobic form of respiration. A. baumannii is known to be the causative agent of hospital-related infections such as pneumonia, meningitis, endocarditis, septicaemia and a plethora of infections such as urinary tract infections found primarily in immunocompromised patients. These attributes of A. baumannii make it a priority pathogen against which potential therapeutic agents need to be developed. A. baumannii employs the formation of a biofilm to insulate its colonies from the outer environment, which allows it to grow under harsh environmental conditions and develop resistance against various drug molecules. Acyl-homoserine lactone synthase (AHLS) is an enzyme involved in the quorum-sensing pathway in A. baumannii, which is responsible for the synthesis of signal molecules known as acyl-homoserine lactones, which trigger the signalling pathway to regulate the factors involved in biofilm formation and regulation. The present study utilised a homology-modelled structure of AHLS to virtually screen it against the ZINC in trial/FDA-approved drug molecule library to find a subset of potential lead candidates. These molecules were then filtered based on Lipinski's, toxicological and ADME properties, binding affinity, and interaction patterns to delineate lead molecules. Finally, three promising molecules were selected, and their estimated binding affinity values were corroborated using AutoDock 4.2. The identified molecules and a control molecule were subsequently subjected to MD simulations to mimic the physiological conditions of protein ligand-binding interaction under the influence of a GROMOS forcefield. The global and essential dynamics analyses and MM/PBSA based binding free energy computations suggested Droperidol and Cipargamin as potential inhibitors against the binding site of AHLS from A. baumannii. The binding free energy calculations based on the MM/PBSA method showed excellent results for Droperidol (- 50.02 ± 4.67 kcal/mol) and Cipargamin (- 42.29 ± 4.05 kcal/mol).


Assuntos
Acil-Butirolactonas , Droperidol , Humanos , Acil-Butirolactonas/metabolismo , Biofilmes , Percepção de Quorum
3.
J Community Health ; 48(3): 496-500, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695922

RESUMO

Adherence to masking recommendations and requirements continues to have a wide variety of impacts in terms of viral spread during the ongoing pandemic. As governments, schools, and private sector businesses formulate decisions around mask requirements, it is important to observe real-life adherence to policies and discern subsequent implications. The CDC MASCUP! observational study tracked mask-wearing habits of students on higher-education campuses across the country to collect stratified data about mask typologies, correct mask usage, and differences in behaviors at locations on a college campus and in the surrounding community. Our findings from a single institution include a significant adherence difference between on-campus (86%) and off-campus sites (72%) across the course of this study as well as a notable change in adherence at the on-campus sites with the expiration of a county-wide governmental mandate, despite continuance of a university-wide mandate. This study, completed on and around the campus of East Tennessee State University in Washington County TN, was able to pivotally extract information regarding increased adherence on campus versus the surrounding community. Changes were also seen when mask mandates were implemented and when they expired.


Assuntos
Instituições Acadêmicas , Estudantes , Humanos , Universidades , North Carolina , Kansas
4.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049745

RESUMO

The interaction of indomethacin with human serum albumin (HSA) has been studied here considering the primary and secondary binding sites. The Stern-Volmer plots were linear in the lower concentration range of indomethacin while a downward curvature was observed in the higher concentration range, suggesting the presence of more than one binding site for indomethacin inside HSA due to which the microenvironment of the fluorophore changed slightly and some of its fraction was not accessible to the quencher. The Stern-Volmer quenching constants (KSV) for the primary and secondary sites were calculated from the two linear portions of the Stern-Volmer plots. There was around a two-fold decrease in the quenching constants for the low-affinity site as compared to the primary binding site. The interaction takes place via a static quenching mechanism and the KSV decreases at both primary and secondary sites upon increasing the temperature. The binding constants were also evaluated, which show strong binding at the primary site and fair binding at the secondary site. The binding was thermodynamically favorable with the liberation of heat and the ordering of the system. In principle, hydrogen bonding and Van der Waals forces were involved in the binding at the primary site while the low-affinity site interacted through hydrophobic forces only. The competitive binding was also evaluated using warfarin, ibuprofen, hemin, and a warfarin + hemin combination as site markers. The binding profile remained unchanged in the presence of ibuprofen, whereas it decreased in the presence of both warfarin and hemin with a straight line in the Stern-Volmer plots. The reduction in the binding was at a maximum when both warfarin and hemin were present simultaneously with the downward curvature in the Stern-Volmer plots at higher concentrations of indomethacin. The secondary structure of HSA also changes slightly in the presence of higher concentrations of indomethacin. Molecular dynamics simulations were performed at the primary and secondary binding sites of HSA which are drug site 1 (located in the subdomain IIA of the protein) and the hemin binding site (located in subdomain IB), respectively. From the results obtained from molecular docking and MD simulation, the indomethacin molecule showed more binding affinity towards drug site 1 followed by the other two sites.


Assuntos
Indometacina , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Ligação Proteica , Ibuprofeno , Varfarina , Hemina/metabolismo , Sítios de Ligação , Termodinâmica , Espectrometria de Fluorescência , Dicroísmo Circular
5.
Protein Expr Purif ; 199: 106149, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952962

RESUMO

Activation-induced cytidine deaminase (AID) is a key player that initiates antibody diversification in activated B-cell. AID mediates somatic hypermutation (SHM) and class switch recombination (CSR) via the deamination of cytosine to uracil at the Ig locus, resulting in the production of high-affinity antibodies. AID is predominantly restricted to Ig genes, whereas off-targeting of AID leads to lymphocyte-related malignancies. Interestingly, apart from FL-AID other splice isoforms of AID are highly expressed in the lymphocyte malignancies. In our study, we found that the heterologous expression of hAID-FL in E. coli cells produced two induced bands of hAID as demonstrated by SDS-PAGE and western blotting. Remarkably, peptide mapping data predicted that one band is hAID-FL and the other is its splice isoform, hAIDδE4a. To get an insight into why E. coli cells expressed hAID-FL and hAID variant, we mutated the 5' and 3' splice site of a putative intron of hAID, but it failed to produce only hAID-FL. Incidentally, hAID expressed with fusion partners also displayed two bands, and peptide mapping data strongly suggest that besides hAID-FL, the lower band showed a significant number of amino acids missing towards the C-terminal domain (named as hAIDδC). Our results are the first report to show that expression of recombinant hAID alone or irrespective of solubilization tags in E. coli cells produced hAID-FL and hAIDδC. It will be fascinating to explore the potential mechanism underlying the expression of hAIDδC from recombinant hAID plasmid in E. coli cells.


Assuntos
Citidina Desaminase , Hipermutação Somática de Imunoglobulina , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Switching de Imunoglobulina , Isoformas de Proteínas/genética
6.
Protein Expr Purif ; 186: 105929, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139322

RESUMO

Accumulation and exposure of organophosphate pesticides are of great concern today owing to their abundant usage and potential health hazards. Harmful effects of organophosphate pesticide exposure and limitations of the available treatment methods necessitate the development of reliable, selective, cost-effective, and sensitive methods of detection. We developed a novel biosensor based on the enzymatic action of recombinant organophosphorus hydrolase (OPH) expressed in E. coli. We report the development of colorimetric biosensors made of His-Nus-OPH as well as His-Nus-OPH loaded alginate microspheres. The colorimetric detection method developed using solution-phase and alginate-encapsulated His-Nus-OPH exhibited detection limits of 0.045 and 0.039 mM, respectively, for ethyl paraoxon, and 0.101 and 0.049 mM, respectively, for methyl parathion. Additionally, fluorescence measurement using pH-sensitive fluorescein isothiocyanate (FITC) was used to sense the quantity of organophosphorus pesticides. The fluorometric detection method using solution-phase His-Nus-OPH, with ethyl paraoxon and methyl parathion as the substrate, reveals the lower limit of detection as 0.014 mM and 0.044 mM, respectively. Our results demonstrate the viability of His-Nus-OPH for OP detection with good sensitivity, LOD, and linear range. We report the first use of N-terminal His-NusA-tagged OPH, which enhances solubility significantly and presents a significant advance for the scientific community.


Assuntos
Arildialquilfosfatase/genética , Escherichia coli/genética , Compostos Organofosforados/análise , Praguicidas/análise , Proteínas Recombinantes/genética , Arildialquilfosfatase/metabolismo , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Metil Paration/análise , Proteínas Recombinantes/metabolismo
7.
Appl Microbiol Biotechnol ; 105(1): 389-400, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33191461

RESUMO

Indiscriminate use of organophosphorus (OP)-based insecticides is a great concern to human health because of bioaccumulation-induced health hazards. Potentially fatal consequences and limited treatment methods of OP poisoning necessitate the need for the development of reliable, selective, cost-effective, and sensitive methods of OP detection. To tackle this issue, the development of effective devices and methods is required to sensitively detect as well as degrade OPs. Enzymatic sensor systems have gained popularity due to high catalytic activity, enhanced detection limits, and high sensitivity with the environmentally benign operation. Organophosphorus acid anhydrolase (OPAA) from Alteromonas sp. JD6.5 is capable of hydrolyzing the P-F, P-O, P-S, and P-CN bonds, in OPs, including nerve agents of the G/V-series. Several mutants of OPAA are reported which have greater activity against various OPs. In this study, recombinant expression of the OPAA-FL variant in Escherichia coli was performed, purified, and subsequently tested for activity against ethyl paraoxon. OPAA-FL variant showed its optimum activity at pH 8.5 and 50 °C. Colorimetric and fluorometric assays were used for estimation of ethyl paraoxon based on p-nitrophenol and fluorescein isothiocyanate (FITC) fluorescence intensity, respectively. Colorimetric and fluorometric assay estimation indicates that ethyl paraoxon can be estimated in the linear range of 0.01 to 1 mM and 0.1 to 0.5 mM, with LOD values 0.04 mM and 0.056 mM, respectively. Furthermore, the OPAA-FL variant was immobilized into alginate microspheres for colorimetric detection of ethyl paraoxon and displayed a linear range of 0.025 to 1 mM with a LOD value of 0.06 mM. KEY POINTS: • Biosensing of paraoxon with purified and encapsulated OPAA-FL variant. • Colorimetric and fluorometric biosensing assay developed using OPAA-FL variant for paraoxon. • First report on alginate encapsulation of OPAA-FL variant for biosensing of paraoxon. Graphical abstract.


Assuntos
Alteromonas , Técnicas Biossensoriais , Praguicidas , Arildialquilfosfatase/genética , Colorimetria , Compostos Organofosforados , Paraoxon , Praguicidas/análise
8.
Crit Rev Toxicol ; 49(5): 387-410, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31268806

RESUMO

Agricultural advancements focusing on increasing crop production have led to excessive usage of insecticides and pesticides, resulting in leaching and accumulation of these highly toxic chemicals in soil, water, and the food-chain. Organophosphorus (OP) compounds are the most commonly used insecticides and pesticides, which cause a wide range of long-lasting and life-threatening conditions. Due to the acute toxicity and long-term side effects of OP compounds, their timely, on-the-spot and rapid detection has gained importance, for efficient healthcare management. In this respect, several OP degrading enzymes have gained the spotlight in developing the enzyme-based biosensors, owing to their high activity and broad specificity. Among these enzymes, organophosphorus hydrolase (OPH) has emerged as a promising candidate for the detection of OP compounds, due to its ability to act on a broad range of substrates having a variety of bonds, like P─F, P─O, P─S, and P─CN. Various techniques employing OPH in free/immobilized/conjugated forms into sensing devices were reported to accurately detect OP compounds. The transduction mechanisms of bio-sensing are electrochemical, optical as well as novel methods like magnetoelastic/surface plasmon resonance. Furthermore, to improve the detection limits and sensitivity, nanoparticles and quantum dots are often employed in conjunction with OPH. Here, we highlight the recent advances in sensing OP compounds using OPH based biosensors, compare specifications of sensing methods, and evaluate the influence of different materials used in developing sensors. This review will also enable researchers to design and configure highly sensitive and accurate sensing systems, leading to the development of point-of-care devices for real-time analysis.


Assuntos
Arildialquilfosfatase/metabolismo , Técnicas Biossensoriais/métodos , Poluentes Ambientais/análise , Compostos Organofosforados/análise , Poluentes Ambientais/toxicidade , Compostos Organofosforados/toxicidade , Praguicidas
10.
Curr Res Struct Biol ; 7: 100127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322649

RESUMO

Acinetobacter baumannii is one of the emerging causes of hospital acquired infections and this bacterium, due to multi-drug resistant and Extensive Drug resistant has been able to develop resistance against the antimicrobial agents that are being used to eliminate it. A.baumannii has been the cause of death in immune compromised patients in hospitals. Hence it is the urgent need of time to find potential inhibitors for this bacterium to cease its virulence and affect its survival inside host organisms. The Dihydrofolate reductase enzyme, which is an important biocatalyst in the conversion of Dihydrofolate to Tetrahydrofolate, is an important drug target protein. In the present study high throughput screening is used to identify the inhibitors of this enzyme. The prioritized ligand molecular candidates identified through virtual screening for the substrate binding site of the predicted model are Z1447621107, Z2604448220 and Z1830442365. The Molecular Dynamics Simulation study suggests that potential inhibitor of the Dihydrofolate reductase enzyme would prevent bacteria from completing its life cycle, affecting its survival. Finally the complexes were analysed for binding free energy of the Dihydrofolate reductase enzyme complexes with the ligands.

11.
3 Biotech ; 14(3): 72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362590

RESUMO

The emergence of carbapenem-resistant Acinetobacter baumannii, a highly concerning bacterial species designated as a Priority 1: Critical pathogen by the WHO, has become a formidable global threat. In this study, we utilised computational methods to explore the potent molecules capable of inhibiting the IspC enzyme, which plays a crucial role in the methylerythritol 4-phosphate (MEP) biosynthetic pathway. Employing high-throughput virtual screening of small molecules from the Enamine library, we focused on the highly conserved substrate binding site of the DXR target protein, resulting in the identification of 1000 potential compounds. Among these compounds, we selected the top two candidates (Z2615855584 and Z2206320703) based on Lipinski's rule of Five and ADMET filters, along with FR900098, a known IspC inhibitor, and DXP, the substrate of IspC, for molecular dynamics (MD) simulations. The MD simulation trajectories revealed remarkable structural and thermodynamic stability, as well as strong binding affinity, for all the IspC-ligand complexes. Furthermore, binding free energy calculations based on MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) methodology demonstrated significant interactions between the selected ligand molecules and IspC. Taking into consideration all the aforementioned criteria, we suggest Z2206320703 as the potent lead candidate against IspC. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03923-w.

12.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486459

RESUMO

The opportunistic bacterium Acinetobacter baumannii, which belongs to ESKAPE group of pathogenic bacteria, is leading cause of infections associated with gram-negative bacteria. Acinetobacter baumannii causes severe diseases, such as VAP (ventilator-associated pneumonia), meningitis, and UTI (urinary tract infections) among the nosocomial infections contracted in hospitals. The high infection rate and growing resistance to the vast array of antibiotics makes it paramount to look for new therapeutic strategies against this pathogen. The most promising therapeutic targets are the proteins involved in the synthesis of peptidoglycan which is chief component of bacterial cell wall, MurE is one of those enzymes and is responsible for the addition of one unit of meso-diaminopimelic acid (meso-A2pm) to the nucleotide precursor, UDPMurNAc-L-Ala-D-Glu, and aids in the formation of crosslinker pentapeptide chain. The three-dimensional structure of MurE was modelled using homology modelling technique and then vHTS was performed using this model against Approved Drug Library on DrugRep server using AutoDock Vina. Out of 500 drug molecules, two were selected based on estimated binding affinity, interaction pattern, interacting residues, etc. The selected drug molecules are DB12887 (Tazemetostat) and DB13879 (Glecaprevir). Then, MD simulations were performed on native MurE and its complexes with ligands to examine their dynamical behaviour, stability, integrity, compactness, and folding properties. The protein-ligand complexes were then subjected to binding free energy calculations using the MM/PBSA-based binding free energy analysis and the values are -109.788 ± 8.03 and -152.753 ± 11.98 kcal for MurE-DB12887 and MurE-DB13879 complex, respectively. All the analysis performed on MD trajectories for the complexes of these ligands with protein provided plenty of dependable evidences to consider these molecules for inhibition of MurE enzyme from A. baumannii. Communicated by Ramaswamy H. Sarma.

13.
Cureus ; 16(3): e56181, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618444

RESUMO

Malaria can present with clinical manifestations overlapping with thrombotic thrombocytopenic purpura (TTP). We present the case of a 55-year-old female who presented with abdominal pain, fever, confusion, dehydration, and recent travel to Nigeria. Laboratory investigations were remarkable for low hemoglobin, decreased platelets, and elevated lactate. Suspicion for TTP occurred when the patient's platelet count and hemoglobin progressively decreased along with acute kidney injury and confusion. There was an elevated ADAMTS13 antibody level and mildly reduced ADAMTS13 activity suggesting possible TTP. However, Plasmodium falciparum was seen on peripheral blood smears. Treatment with artemether-lumefantrine was initiated which led to improvement in parasitemia, platelet count, and anemia. The similarity between malaria and TTP is mostly explained by thrombotic microangiopathic anemia (TMA) present in both diseases. Awareness of the common pathogenesis of TMA in both diseases and clinical judgment are pivotal in determining the timely initiation of appropriate treatment.

14.
Neurosci Lett ; 833: 137826, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38768940

RESUMO

Synucleins are pivotal in neurodegenerative conditions. Beta-synuclein (ß-synuclein) is part of the synuclein protein family alongside alpha-synuclein (α-synuclein) and gamma-synuclein (γ-synuclein). These proteins, found mainly in brain tissue and cancers, are soluble and unstructured. ß-synuclein shares significant similarity with α-synuclein, especially in their N-terminus, with a 90% match. However, their aggregation tendencies differ significantly. While α-synuclein aggregation is believed to be counteracted by ß-synuclein, which occurs in conditions like Parkinson's disease, ß-synuclein may counteract α-synuclein's toxic effects on the nervous system, offering potential treatment for neurodegenerative diseases. Under normal circumstances, ß-synuclein may guard against disease by interacting with α-synuclein. Yet, in pathological environments with heightened levels or toxic substances, it might contribute to disease. Our research aims to explore potential harmful mutations in the ß-synuclein using computational tools to predict their destabilizing impact on protein structure. Consensus analysis revealed rs1207608813 (A63P), rs1340051870 (S72F), and rs1581178262 (G36C) as deleterious. These findings highlight the intricate relationship between nsSNPs and protein function, shedding light on their potential implications in disease pathways. Understanding the structural consequences of nsSNPs is crucial for elucidating their role in pathogenesis and developing targeted therapeutic interventions. Our results offer a robust computational framework for identifying neurodegenerative disorder-related mutations from SNP datasets, potentially reducing the costs associated with experimental characterization.


Assuntos
Polimorfismo de Nucleotídeo Único , beta-Sinucleína , beta-Sinucleína/genética , beta-Sinucleína/metabolismo , beta-Sinucleína/química , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Predisposição Genética para Doença , Mutação , Conformação Proteica
15.
Chronic Stress (Thousand Oaks) ; 8: 24705470241268483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113832

RESUMO

Background: Rural areas in the United States have been disproportionately burdened with high rates of substance use, mental health challenges, chronic stress, and suicide behaviors. Factors such as a lack of mental health services, decreased accessibility to public health resources, and social isolation contribute to these disparities. The current study explores risk factors to suicidal ideation, using emergency room discharge data from Maryland. Methods: The current study used data from the Healthcare Cost and Utilization Project (HCUP) State Emergency Department Databases (SEDD) from the State of Maryland. Logistic regression was used to assess the association between ICD-10 coded opioid use disorder, alcohol use disorder, cannabis use disorder, major depressive disorder, and the outcome variable of suicidal ideation discharge. We controlled for income, race, age, and gender. Results: Lifetime major depressive disorder diagnosis (odds ration [OR] = 79.30; 95% confidence interval [CI] 51.91-121.15), alcohol use disorder (OR = 6.87; 95% CI 4.97-9.51), opioid use disorder (OR = 5.39; 95% CI 3.63-7.99), and cannabis use disorder (OR = 2.67; 95% CI 1.37-5.18) were all positively associated with suicidal ideation. Conclusions: The study highlights the strong link between prior substance use disorder, depression, and suicidal ideation visit to the emergency room, indicating the need for prevention and intervention, particularly among those in rural areas where the burden of suicidal ideation and chronic stress are high. As health disparities between rural and urban areas further widened during the COVID-19 pandemic, there is an urgent need to address these issues.

16.
Elife ; 132024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38289036

RESUMO

Reactive astrogliosis is a common pathological hallmark of CNS injury, infection, and neurodegeneration, where reactive astrocytes can be protective or detrimental to normal brain functions. Currently, the mechanisms regulating neuroprotective astrocytes and the extent of neuroprotection are poorly understood. Here, we report that conditional deletion of serum response factor (SRF) in adult astrocytes causes reactive-like hypertrophic astrocytes throughout the mouse brain. These SrfGFAP-ERCKO astrocytes do not affect neuron survival, synapse numbers, synaptic plasticity or learning and memory. However, the brains of Srf knockout mice exhibited neuroprotection against kainic-acid induced excitotoxic cell death. Relevant to human neurodegenerative diseases, SrfGFAP-ERCKO astrocytes abrogate nigral dopaminergic neuron death and reduce ß-amyloid plaques in mouse models of Parkinson's and Alzheimer's disease, respectively. Taken together, these findings establish SRF as a key molecular switch for the generation of reactive astrocytes with neuroprotective functions that attenuate neuronal injury in the setting of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Astrócitos , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Camundongos Knockout , Neuroproteção , Fator de Resposta Sérica/metabolismo
17.
Nature ; 445(7127): 550-3, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17187053

RESUMO

Voltage-gated potassium (Kv) channels, essential for regulating potassium uptake and cell volume in plants and electrical excitability in animals, switch between conducting and non-conducting states as a result of conformational changes in the four voltage-sensing domains (VSDs) that surround the channel pore. This process, known as gating, is initiated by a cluster of positively charged residues on the fourth transmembrane segment (S4) of each VSD, which drives the VSD into a 'down state' at negative voltages and an 'up state' at more positive voltages. The crystal structure of Kv1.2 probably corresponds to the up state, but the local environment of S4 in the down state and its motion in voltage gating remains unresolved. Here we employed several conditional lethal/second-site suppressor yeast screens to determine the transmembrane packing of the VSD in the down state. This screen relies on the ability of KAT1, a eukaryotic Kv channel, to conduct potassium when its VSDs are in the down state, thereby rescuing potassium-transport-deficient yeast. Starting with KAT1 channels bearing conditional lethal mutations, we identified second-site suppressor mutations throughout the VSD that recover yeast growth. We then constructed a down state model of the channel using six pairs of interacting residues as structural constraints and verified this model by engineering suppressor mutations on the basis of spatial considerations. A comparison of this down state model with the up state Kv1.2 structure suggests that the VSDs undergo large rearrangements during gating, whereas the S4 segment remains positioned between the central pore and the remainder of the VSD in both states.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Condutividade Elétrica , Genes Letais/genética , Transporte de Íons , Canal de Potássio Kv1.2/química , Canal de Potássio Kv1.2/metabolismo , Modelos Moleculares , Canais de Potássio Corretores do Fluxo de Internalização/genética , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Supressão Genética/genética
18.
3 Biotech ; 13(1): 29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36597461

RESUMO

Sirtuins play an important role in signalling pathways associated with various metabolic regulations. They possess mono-ADP-ribosyltransferase or deacylase activity like demalonylase, deacetylase, depalmitoylase, demyristoylase and desuccinylase activity. Sirtuins are histone deacetylases which depends upon nicotinamide adenine dinucleotide (NAD) that deacetylate lysine residues. There are a total of seven human sirtuins that have been identified namely, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7. The subcellular location of mammalian sirtuins, SIRT1, SIRT6, and SIRT7 are in the nucleus; SIRT3, SIRT4, and SIRT5 are in mitochondria, and SIRT2 is in cytoplasm. Structurally sirtuins contains a N-terminal, a C-terminal and a Zn+ binding domain. The sirtuin family has been found to be crucial for maintaining lipid and glucose homeostasis, and also for regulating insulin secretion and sensitivity, DNA repair pathways, neurogenesis, inflammation, and ageing. Based on the literature, sirtuins are overexpressed and play an important role in tumorigenicity in various types of cancer such as non-small cell lung cancer, colorectal cancer, etc. In this review, we have discussed about the different types of human sirtuins along with their structural and functional features. We have also discussed about the various natural and synthetic regulators of sirtuin activities like resveratrol. Our overall study shows that the correct regulation of sirtuins can be a good target for preventing and treating various diseases for improving the human lifespan. To investigate the true therapeutic potential of sirtuin proteins and their efficacy in a variety of pathological diseases, a better knowledge of the link between the structure and function of sirtuin proteins would be necessary.

19.
J Biomol Struct Dyn ; 41(12): 5418-5435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35706070

RESUMO

Sortases are extracellular transpeptidases that play an essential role in the adhesion of secreted proteins to the peptidoglycan layer of the cell wall of Gram-negative bacteria. Sortases are an important drug target protein due to their involvement in synthesizing the peptidoglycan cell wall of Streptococcus pyogenes, and these are not found in Homo sapiens. In this study, initially, we have performed protein sequence analysis to understand the sequential properties of Sortase C. Next, a comparative protein modeling approach was used to predict the three-dimensional model of Sortase C based on the crystal structure of Sortase C from Streptococcus pneumoniae. Virtual screening with an in-house library of phytochemicals from Syzygium aromaticum and molecular docking studies were performed to identify the promising lead molecules. These compounds were also analyzed for their drug-like and pharmacokinetic properties. Subsequently, the protein-ligand complexes of the selected ligands were subjected to molecular dynamics (MD) simulations to investigate their dynamic behavior in physiological conditions. The global and essential dynamics analyses result implied that the Sortase C complexes of the proposed three lead candidates exhibited adequate stability during the MD simulations. Additionally, the three proposed molecules showed favorable MM/PBSA binding free energy values ranging from -13.8 +/- 9.41 to -56.6 +/- 8.82 kcal/mol. After an extensive computational investigation, we have identified three promising lead candidates (CID:13888122, CID:3694932 and CID:102445430) against Sortase C from S. pyogenes. The result obtained from these computational studies can be used to screen and develop the inhibitors against Sortase C from S. pyogenes.Communicated by Ramaswamy H. Sarma.


Assuntos
Streptococcus pyogenes , Syzygium , Humanos , Simulação de Acoplamento Molecular , Peptidoglicano , Simulação de Dinâmica Molecular
20.
J Biomol Struct Dyn ; 41(21): 11598-11611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752319

RESUMO

The advent of multi drug resistance and extensive-drug resistance among various pathogens has caused a rise in nosocomial infections, which in turn has led to rising hospital-acquired infection-related mortality rates. Amongst them, carbapenem-resistant Acinetobacter baumannii is one of the most notorious bacterial species, categorized as a Priority 1: Critical pathogen by the WHO. Therefore, the discovery and development of novel antibiotics, as well as the identification of potential inhibitors, have become the need of the hour. In this study, we have employed computational methods to explore and identify molecules capable of inhibiting enzymes essential in the methylerythritol 4-phosphate (MEP) biosynthetic pathway. The high throughput virtual screening of small molecules (Enamine Advanced Collection (AC) library) against the highly conserved substrate-binding site of the DXS target protein provided us with a total of 1000 molecules. The top four potential candidate molecules, namely-Z3353989070, Z3353989049, Z2295848528, and Z1685501455, alongside fluoropyruvate (control), a known inhibitor of DXS, was chosen for a molecular dynamic simulation study. The molecular dynamic simulation trajectories suggested high structural and thermodynamical stability and strong binding affinity of all the DXS-ligand complexes. Moreover, the MM/PBSA-based binding free energy calculations also exhibited strong interactions of the selected ligand molecules with DXS. In conclusion, we have found that all four molecules displayed better results and stronger binding affinity than the control. In the end, based on all the above-mentioned criteria, we have proposed Z3353989049 to be the promising lead candidate against DXS from A. baumannii.Communicated by Ramaswamy H. Sarma.


Assuntos
Acinetobacter baumannii , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Ligantes , Óxido Nítrico Sintase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA