Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Res Pract ; 18(3): 309-324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38854466

RESUMO

BACKGROUND/OBJECTIVES: This study evaluated the beneficial effects of an ethanol extract of Boswellia serrata gum resin (FJH-UBS) in osteoporosis. MATERIALS/METHODS: MC3T3-E1 osteoblastic cells and RAW 264.7 osteoclastic cells were treated with FJH-UBS. The alkaline phosphatase (ALP) activity, mineralization, collagen synthesis, osteocalcin content, and Runt-related transcription factor 2 (RUNX2) and Osterix expression were measured in MC3T3-E1 cells. The actin ring structures, tartrate-resistant acid phosphatase (TRAP) activity, and the nuclear factor of activator T-cells, cytoplasm 1 (NFATc1) expression were evaluated in RAW 264.7 cells. Ovariectomized ICR mice were orally administered FJH-UBS for eight weeks. The bone mineral density (BMD) and the serum levels of osteocalcin, procollagen 1 N-terminal propeptide (P1NP), osteoprotegerin, and TRAP 5b were analyzed. RESULTS: FJH-UBS increased the ALP activity, collagen, osteocalcin, mineralization, and RUNX2 and osterix expression in MC3T3-E1 osteoblastic cells, whereas it decreased the TRAP activity, actin ring structures, and NFATc1 expression in RAW 264.7 osteoclastic cells. In ovariectomy-induced osteoporosis mice, FJH-UBS positively restored all of the changes in the bone metabolism biomarkers (BMD, osteocalcin, P1NP, osteoprotegerin, and TRAP 5b) caused by the ovariectomy. CONCLUSION: FJH-UBS has anti-osteoporotic activity by promoting osteoblast activity and inhibiting osteoclast activity in vitro and in vivo, suggesting that FJH-UBS is a potential functional food ingredient for osteoporosis.

2.
Planta ; 223(3): 449-56, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16136336

RESUMO

Erwinia amylovora is a member of the harpin proteins that induces pathogen resistance and hypersensitive cell death in plants. To obtain tobacco plants displaying a hypersensitive response, the hrpN gene from Erwinia amylovora was cloned into vector pMJC-GB under the control of the rice cytochrome promoter and transfected into tobacco. Southern hybridization with a hrpN probe revealed that the gene was present in one copy in the transgenic plants. In addition, hrpN transcripts could be detected in transgenic plants but not in wild-type tobacco. The wild type gave 75 products in RAPD analysis with 12 primers while the transgenic plants gave 73, suggesting that hrpN gene had been integrated into the transgenic plant genomic DNA. The distribution of cell cycle phases in the wild type and transgenic plants was G0-G1: 71.25%, G2-M: 20.41%, S: 8.33%, while in transgenic plant was G0-G1: 54.95%, G2-M: 43.82%, S: 10.23%. The sizes of stomata and guard cells on transgenic leaves were similar to those of the wild type, but the epidermal cells were clearly smaller. The transgenic plants showed accelerated growth and development as well as enhanced resistance to Botrytis cinerea.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Botrytis/patogenicidade , Erwinia amylovora/genética , Nicotiana/genética , Nicotiana/microbiologia , Southern Blotting , Ciclo Celular/fisiologia , Dosagem de Genes , Imunidade Inata/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Plasmídeos/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA