Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 115(1): 112-119, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37988623

RESUMO

Snakeflies (Raphidioptera) are the smallest order of holometabolous insects that have kept their distinct and name-giving appearance since the Mesozoic, probably since the Jurassic, and possibly even since their emergence in the Carboniferous, more than 300 million years ago. Despite their interesting nature and numerous publications on their morphology, taxonomy, systematics, and biogeography, snakeflies have never received much attention from the general public, and only a few studies were devoted to their molecular biology. Due to this lack of molecular data, it is therefore unknown, if the conserved morphological nature of these living fossils translates to conserved genomic structures. Here, we present the first genome of the species and of the entire order of Raphidioptera. The final genome assembly has a total length of 669 Mbp and reached a high continuity with an N50 of 5.07 Mbp. Further quality controls also indicate a high completeness and no meaningful contamination. The newly generated data was used in a large-scaled phylogenetic analysis of snakeflies using shared orthologous sequences. Quartet score and gene concordance analyses revealed high amounts of conflicting signals within this group that might speak for substantial incomplete lineage sorting and introgression after their presumed re-radiation after the asteroid impact 66 million years ago. Overall, this reference genome will be a door-opening dataset for many future research applications, and we demonstrated its utility in a phylogenetic analysis that provides new insights into the evolution of this group of living fossils.


Assuntos
Fósseis , Genoma , Animais , Filogenia , Genômica , Insetos/genética
2.
BMC Biol ; 21(1): 79, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041515

RESUMO

BACKGROUND: Baleen whales are a clade of gigantic and highly specialized marine mammals. Their genomes have been used to investigate their complex evolutionary history and to decipher the molecular mechanisms that allowed them to reach these dimensions. However, many unanswered questions remain, especially about the early radiation of rorquals and how cancer resistance interplays with their huge number of cells. The pygmy right whale is the smallest and most elusive among the baleen whales. It reaches only a fraction of the body length compared to its relatives and it is the only living member of an otherwise extinct family. This placement makes the pygmy right whale genome an interesting target to update the complex phylogenetic past of baleen whales, because it splits up an otherwise long branch that leads to the radiation of rorquals. Apart from that, genomic data of this species might help to investigate cancer resistance in large whales, since these mechanisms are not as important for the pygmy right whale as in other giant rorquals and right whales. RESULTS: Here, we present a first de novo genome of the species and test its potential in phylogenomics and cancer research. To do so, we constructed a multi-species coalescent tree from fragments of a whole-genome alignment and quantified the amount of introgression in the early evolution of rorquals. Furthermore, a genome-wide comparison of selection rates between large and small-bodied baleen whales revealed a small set of conserved candidate genes with potential connections to cancer resistance. CONCLUSIONS: Our results suggest that the evolution of rorquals is best described as a hard polytomy with a rapid radiation and high levels of introgression. The lack of shared positive selected genes between different large-bodied whale species supports a previously proposed convergent evolution of gigantism and hence cancer resistance in baleen whales.


Assuntos
Neoplasias , Baleias , Animais , Filogenia , Genoma , Genômica , Neoplasias/genética
3.
BMC Biol ; 21(1): 215, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833744

RESUMO

BACKGROUND: In the speciation continuum, the strength of reproductive isolation varies, and species boundaries are blurred by gene flow. Interbreeding among giraffe (Giraffa spp.) in captivity is known, and anecdotal reports of natural hybrids exist. In Kenya, Nubian (G. camelopardalis camelopardalis), reticulated (G. reticulata), and Masai giraffe sensu stricto (G. tippelskirchi tippelskirchi) are parapatric, and thus, the country might be a melting pot for these taxa. We analyzed 128 genomes of wild giraffe, 113 newly sequenced, representing these three taxa. RESULTS: We found varying levels of Nubian ancestry in 13 reticulated giraffe sampled across the Laikipia Plateau most likely reflecting historical gene flow between these two lineages. Although comparatively weaker signs of ancestral gene flow and potential mitochondrial introgression from reticulated into Masai giraffe were also detected, estimated admixture levels between these two lineages are minimal. Importantly, contemporary gene flow between East African giraffe lineages was not statistically significant. Effective population sizes have declined since the Late Pleistocene, more severely for Nubian and reticulated giraffe. CONCLUSIONS: Despite historically hybridizing, these three giraffe lineages have maintained their overall genomic integrity suggesting effective reproductive isolation, consistent with the previous classification of giraffe into four species.


Assuntos
Girafas , Animais , Girafas/genética , Quênia , Genômica , Genoma , Hibridização Genética
4.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35512360

RESUMO

It is generally recognized that large-scale whaling in the 19th and 20th century led to a substantial reduction of the size of many cetacean populations, particularly those of the baleen whales (Mysticeti). The impact of these operations on genomic diversity of one of the most hunted whales, the fin whale (Balaenoptera physalus), has remained largely unaddressed because of the paucity of adequate samples and the limitation of applicable techniques. Here, we have examined the effect of whaling on the North Atlantic fin whale based on genomes of 51 individuals from Icelandic waters, representing three temporally separated intervals, 1989, 2009 and 2018 and provide a reference genome for the species. Demographic models suggest a noticeable drop of the effective population size of the North Atlantic fin whale around a century ago. The present results suggest that the genome-wide heterozygosity is not markedly reduced and has remained comparable with other baleen whale species. Similarly, there are no signs of apparent inbreeding, as measured by the proportion of long runs of homozygosity, or of a distinctively increased mutational load, as measured by the amount of putative deleterious mutations. Compared with other baleen whales, the North Atlantic fin whale appears to be less affected by anthropogenic influences than other whales such as the North Atlantic right whale, consistent with the presence of long runs of homozygosity and higher levels of mutational load in an otherwise more heterozygous genome. Thus, genome-wide assessments of other species and populations are essential for future, more specific, conservation efforts.


Assuntos
Baleia Comum , Animais , Baleia Comum/genética , Genoma , Genômica , Densidade Demográfica , Baleias/genética
5.
Mol Phylogenet Evol ; 184: 107787, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080398

RESUMO

Understanding speciation is one of the cornerstones of biological diversity research. Currently, speciation is often understood as a continuous process of divergence that continues until genetic or other incompatibilities minimize or prevent interbreeding. The Palearctic snake genus Natrix is an ideal group to study speciation, as it comprises taxa representing distinct stages of the speciation process, ranging from widely interbreeding parapatric taxa through parapatric species with very limited gene flow in narrow hybrid zones to widely sympatric species. To understand the evolution of reproductive isolation through time, we have sequenced the genomes of all five species within this genus and two additional subspecies. We used both long-read and short-read methods to sequence and de-novo-assemble two high-quality genomes (Natrix h. helvetica, Natrix n. natrix) to their 1.7 Gb length with a contig N50 of 4.6 Mbp and 1.5 Mbp, respectively, and used these as references to assemble the remaining short-read-based genomes. Our phylogenomic analyses yielded a well-supported dated phylogeny and evidence for a surprisingly complex history of interspecific gene flow, including between widely sympatric species. Furthermore, evidence for gene flow was also found for currently allopatric species pairs. Genetic exchange among these well-defined, distinct, and several million-year-old reptile species emphasizes that speciation and maintenance of species distinctness can occur despite continued genetic exchange.


Assuntos
Colubridae , Animais , Filogenia , Especiação Genética , Hibridização Genética , Genômica
6.
J Hered ; 114(2): 189-194, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36661278

RESUMO

Despite increasing sequencing efforts, numerous fish families still lack a reference genome, which complicates genetic research. One such understudied family is the sand lances (Ammodytidae, literally: "sand burrower"), a globally distributed clade of over 30 fish species that tend to avoid tidal currents by burrowing into the sand. Here, we present the first annotated chromosome-level genome assembly of the great sand eel (Hyperoplus lanceolatus). The genome assembly was generated using Oxford Nanopore Technologies long sequencing reads and Illumina short reads for polishing. The final assembly has a total length of 808.5 Mbp, of which 97.1% were anchored into 24 chromosome-scale scaffolds using proximity-ligation scaffolding. It is highly contiguous with a scaffold and contig N50 of 33.7 and 31.3 Mbp, respectively, and has a BUSCO completeness score of 96.9%. The presented genome assembly is a valuable resource for future studies of sand lances, as this family is of great ecological and commercial importance and may also contribute to studies aiming to resolve the suprafamiliar taxonomy of bony fishes.


Assuntos
Genoma , Perciformes , Animais , Anotação de Sequência Molecular , Perciformes/genética , Cromossomos/genética , Peixes/genética , Enguias/genética
7.
J Hered ; 113(5): 568-576, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35788365

RESUMO

The okapi (Okapia johnstoni), or forest giraffe, is the only species in its genus and the only extant sister group of the giraffe within the family Giraffidae. The species is one of the remaining large vertebrates surrounded by mystery because of its elusive behavior as well as the armed conflicts in the region where it occurs, making it difficult to study. Deforestation puts the okapi under constant anthropogenic pressure, and it is currently listed as "Endangered" on the IUCN Red List. Here, we present the first annotated de novo okapi genome assembly based on PacBio continuous long reads, polished with short reads, and anchored into chromosome-scale scaffolds using Hi-C proximity ligation sequencing. The final assembly (TBG_Okapi_asm_v1) has a length of 2.39 Gbp, of which 98% are represented by 28 scaffolds > 3.9 Mbp. The contig N50 of 61 Mbp and scaffold N50 of 102 Mbp, together with a BUSCO score of 94.7%, and 23 412 annotated genes, underline the high quality of the assembly. This chromosome-scale genome assembly is a valuable resource for future conservation of the species and comparative genomic studies among the giraffids and other ruminants.


Assuntos
Girafas , Animais , Cromossomos/genética , Genoma , Genômica , Análise de Sequência de DNA
9.
BMC Bioinformatics ; 19(1): 10, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310567

RESUMO

BACKGROUND: We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. RESULT: The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. CONCLUSIONS: The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.


Assuntos
Fluxo Gênico , Genômica/métodos , Animais , Modelos Genéticos , Densidade Demográfica , Análise de Sequência de DNA
10.
Mol Biol Evol ; 32(5): 1268-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25633377

RESUMO

The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Marsupiais/genética , Animais , Carnivoridade , Genoma , Filogenia , Elementos Nucleotídeos Curtos e Dispersos/genética , Tasmânia
11.
Trends Genet ; 29(8): 439-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23764187

RESUMO

Networks allow the investigation of evolutionary relationships that do not fit a tree model. They are becoming a leading tool for describing the evolutionary relationships between organisms, given the comparative complexities among genomes.


Assuntos
Evolução Biológica , Modelos Genéticos , Filogenia , Animais , Genoma , Saccharomyces/genética
12.
Mol Phylogenet Evol ; 94(Pt A): 447-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518740

RESUMO

In recent articles published in Molecular Phylogenetics and Evolution, Mark Springer and John Gatesy (S&G) present numerous criticisms of recent implementations and testing of the multispecies coalescent (MSC) model in phylogenomics, popularly known as "species tree" methods. After pointing out errors in alignments and gene tree rooting in recent phylogenomic data sets, particularly in Song et al. (2012) on mammals and Xi et al. (2014) on plants, they suggest that these errors seriously compromise the conclusions of these studies. Additionally, S&G enumerate numerous perceived violated assumptions and deficiencies in the application of the MSC model in phylogenomics, such as its assumption of neutrality and in particular the use of transcriptomes, which are deemed inappropriate for the MSC because the constituent exons often subtend large regions of chromosomes within which recombination is substantial. We acknowledge these previously reported errors in recent phylogenomic data sets, but disapprove of S&G's excessively combative and taunting tone. We show that these errors, as well as two nucleotide sorting methods used in the analysis of Amborella, have little impact on the conclusions of those papers. Moreover, several concepts introduced by S&G and an appeal to "first principles" of phylogenetics in an attempt to discredit MSC models are invalid and reveal numerous misunderstandings of the MSC. Contrary to the claims of S&G we show that recent computer simulations used to test the robustness of MSC models are not circular and do not unfairly favor MSC models over concatenation. In fact, although both concatenation and MSC models clearly perform well in regions of tree space with long branches and little incomplete lineage sorting (ILS), simulations reveal the erratic behavior of concatenation when subjected to data subsampling and its tendency to produce spuriously confident yet conflicting results in regions of parameter space where MSC models still perform well. S&G's claims that MSC models explain little or none (0-15%) of the observed gene tree heterogeneity observed in a mammal data set and that MSC models assume ILS as the only source of gene tree variation are flawed. Overall many of their criticisms of MSC models are invalidated when concatenation is appropriately viewed as a special case of the MSC, which in turn is a special case of emerging network models in phylogenomics. We reiterate that there is enormous promise and value in recent implementations and tests of the MSC and look forward to its increased use and refinement in phylogenomics.


Assuntos
Simulação por Computador , Especiação Genética , Genômica/métodos , Modelos Genéticos , Filogenia , Animais , Evolução Molecular , Magnoliopsida/classificação , Magnoliopsida/genética , Mamíferos/classificação , Mamíferos/genética , Recombinação Genética
13.
BMC Genomics ; 16: 585, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26250829

RESUMO

BACKGROUND: The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. RESULTS: The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. CONCLUSIONS: Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.


Assuntos
Raposas/genética , Transcriptoma/genética , Trifosfato de Adenosina/genética , Animais , Evolução Biológica , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
14.
Mol Biol Evol ; 31(8): 2004-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24903145

RESUMO

Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal.


Assuntos
Fluxo Gênico , Análise de Sequência de DNA/métodos , Ursidae/genética , Cromossomo Y/genética , Animais , Núcleo Celular/genética , Evolução Molecular , Especiação Genética , Íntrons , Masculino , Mitocôndrias/genética , Filogenia , Ursidae/classificação
15.
Mol Biol Evol ; 31(6): 1353-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24667925

RESUMO

Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms.


Assuntos
Cromossomos de Mamíferos , DNA/análise , Fluxo Gênico , Ursidae/genética , Cromossomo Y , Animais , Evolução Molecular , Feminino , Especiação Genética , Variação Genética , Haplótipos , Masculino , Repetições de Microssatélites , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Fatores Sexuais , Irmãos , Ursidae/classificação
16.
Mol Ecol ; 24(24): 6041-60, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26769404

RESUMO

High-resolution, male-inherited Y-chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y-chromosomal STRs and three Y-chromosomal single nucleotide polymorphism markers (Y-SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large-scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.


Assuntos
Fluxo Gênico , Genética Populacional , Ursidae/genética , Cromossomo Y/genética , Distribuição Animal , Animais , Finlândia , Haplótipos , Noruega , Polimorfismo de Nucleotídeo Único , Federação Russa , Suécia
17.
BMC Evol Biol ; 14: 219, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25927851

RESUMO

BACKGROUND: The current taxonomy of the African giraffe (Giraffa camelopardalis) is primarily based on pelage pattern and geographic distribution, and nine subspecies are currently recognized. Although genetic studies have been conducted, their resolution is low, mainly due to limited sampling. Detailed knowledge about the genetic variation and phylogeography of the South African giraffe (G. c. giraffa) and the Angolan giraffe (G. c. angolensis) is lacking. We investigate genetic variation among giraffe matrilines by increased sampling, with a focus on giraffe key areas in southern Africa. RESULTS: The 1,562 nucleotides long mitochondrial DNA dataset (cytochrome b and partial control region) comprises 138 parsimony informative sites among 161 giraffe individuals from eight populations. We additionally included two okapis as an outgroup. The analyses of the maternally inherited sequences reveal a deep divergence between northern and southern giraffe populations in Africa, and a general pattern of distinct matrilineal clades corresponding to their geographic distribution. Divergence time estimates among giraffe populations place the deepest splits at several hundred thousand years ago. CONCLUSIONS: Our increased sampling in southern Africa suggests that the distribution ranges of the Angolan and South African giraffe need to be redefined. Knowledge about the phylogeography and genetic variation of these two maternal lineages is crucial for the development of appropriate management strategies.


Assuntos
DNA Mitocondrial/genética , Ruminantes/classificação , Ruminantes/genética , África Austral , Angola , Animais , Sequência de Bases , Citocromos b/genética , DNA Mitocondrial/análise , Feminino , Variação Genética , Humanos , Dados de Sequência Molecular , Filogenia , Filogeografia
18.
Zoo Biol ; 33(5): 440-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25043251

RESUMO

The lesser kudu (Tragelaphus imberbis) is a spiral-horned antelope native to northeastern Africa. Individuals kept in zoological gardens are suspected to be highly inbred due to few founder individuals and a small breeding stock. A morphological study suggested two distinct subspecies of the lesser kudu. However, subspecies designation and population structure in zoological gardens has not been analyzed using molecular markers. We analyzed one mitochondrial marker and two nuclear intron loci (total: 2,239 nucleotides) in 52 lesser kudu individuals. Of these, 48 individuals were bred in captivity and sampled from seven different zoos. The four remaining individuals were recently captured in Somalia and are currently held in the Maktoum zoo. Maternally inherited mitochondrial sequences indicate substantial amounts of genetic variation in the zoo populations, while the biparentally inherited intron sequences are, as expected, less variable. The analyzed individuals show 10 mitochondrial haplotypes with a maximal distance of 10 mutational steps. No prominent subspecies structure is detectable in this study. For further studies of the lesser kudu population genetics, we present microsatellite markers from a low-coverage genome survey using 454 sequencing technology.


Assuntos
Animais de Zoológico/genética , Antílopes/genética , Variação Genética , Genoma/genética , Animais , Antílopes/classificação , Sequência de Bases , Primers do DNA/genética , DNA Mitocondrial/genética , Efeito Fundador , Genética Populacional , Haplótipos/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/veterinária , Alinhamento de Sequência , Análise de Sequência de DNA/veterinária , Especificidade da Espécie
19.
Biol Rev Camb Philos Soc ; 99(1): 23-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37621151

RESUMO

Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the 'neutral mutation-random drift' hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist-selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?


Assuntos
Evolução Biológica , Seleção Genética , Mutação , Polimorfismo Genético , Evolução Molecular
20.
GigaByte ; 2024: gigabyte105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239770

RESUMO

The snake pipefish, Entelurus aequoreus (Linnaeus, 1758), is a northern Atlantic fish inhabiting open seagrass environments that recently expanded its distribution range. Here, we present a highly contiguous, near chromosome-scale genome of E. aequoreus. The final assembly spans 1.6 Gbp in 7,391 scaffolds, with a scaffold N50 of 62.3 Mbp and L50 of 12. The 28 largest scaffolds (>21 Mbp) span 89.7% of the assembly length. A BUSCO completeness score of 94.1% and a mapping rate above 98% suggest a high assembly completeness. Repetitive elements cover 74.93% of the genome, one of the highest proportions identified in vertebrates. Our demographic modeling identified a peak in population size during the last interglacial period, suggesting the species might benefit from warmer water conditions. Our updated snake pipefish assembly is essential for future analyses of the morphological and molecular changes unique to the Syngnathidae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA