Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nucleic Acids Res ; 52(5): 2530-2545, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38197228

RESUMO

Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.


Assuntos
Proteínas Arqueais , Archaeoglobus fulgidus , Proteínas Argonautas , Archaeoglobus fulgidus/metabolismo , Proteínas Argonautas/metabolismo , Bactérias/genética , Eucariotos/genética , Células Procarióticas/metabolismo , Domínios Proteicos , RNA Guia de Sistemas CRISPR-Cas , Proteínas Arqueais/metabolismo
2.
Nanotechnology ; 34(19)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36745919

RESUMO

A systematic spectroscopic characterization of highly homogeneous water suspensions of 'buckydiamonds' comprising sp3cubic nanodiamond (ND) core covered with disordered sp2shell densely decorated with oxygen-containing groups demonstrates the excitation-wavelength-dependent photoluminescence (PL) given by at least four types of specific structures on the ND surface (hydroxyl, C=O containing ketones, carboxylic anhydrides, and carboxyl groups). PL properties of NDs suspensions possess concentration-dependent behavior revealing tendency of NDs to agglomerate. PL of NDs has been found to be strongly sensitive to pH of the environment in wide range of pH values, i.e. 2-11. We disclosed the mechanisms of pH sensitivity of the 'buckydiamond' and proved that it can serve as all-optical sensor of tiny pH variations suitable for further exploitation for pH sensing locally in the area where NDs have been delivered for any purpose, e.g. bioimaging or therapeutic needs.

3.
Environ Res ; 234: 116588, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423368

RESUMO

Microbially induced calcite precipitation (MICP) is an efficient and eco-friendly technique that has attracted significant interest for resolving various problems in the soil (erosion, improving structural integrity and water retention, etc.), remediation of heavy metals, production of self-healing concrete or restoration of different concrete structures. The success of most common MICP methods depends on microorganisms degrading urea which leads to the formation of CaCO3 crystals. While Sporosarcina pasteurii is a well-known microorganism for MICP, other soil abundant microorganisms, such as Staphylococcus bacteria have not been thoroughly studied for its efficiency in bioconsolidation though MICP is a very important proccess which can ensure soil quality and health. This study aimed to analyze MICP process at the surface level in Sporosarcina pasteurii and a newly screened Staphylococcus sp. H6 bacterium as well as show the possibility of this new microorganism to perform MICP. It was observed that Staphylococcus sp. H6 culture precipitated 157.35 ± 3.3 mM of Ca2+ ions from 200 mM, compared to 176 ± 4.8 mM precipitated by S. pasteurii. The bioconsolidation of sand particles was confirmed by Raman spectroscopy and XRD analysis, which indicated the formation of CaCO3 crystals for both Staphylococcus sp. H6 and S. pasteurii cells. The water-flow test suggested a significant reduction in water permeability in bioconsolidated sand samples for both Staphylococcus sp. H6 and S. pasteurii. Notably, this study provides the first evidence that CaCO3 precipitation occurs on the surface of Staphylococcus and S. pasteurii cells within the initial 15-30 min after exposure to the biocementation solution. Furthermore, Atomic force microscopy (AFM) indicated rapid changes in cell roughness, with bacterial cells becoming completely coated with CaCO3 crystals after 90 min incubation with a biocementation solution. To our knowledge, this is the first time where atomic force microscopy was used to visualize the dynamic of MICP on cell surface.


Assuntos
Carbonato de Cálcio , Urease , Urease/química , Urease/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Staphylococcus/metabolismo , Areia , Bactérias/metabolismo , Solo , Água
4.
Nanotechnology ; 33(39)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623324

RESUMO

Fragmented multi-layered graphene films were directly synthesized via chemical vapor deposition (CVD) on dielectric substrates with a pre-deposited copper catalyst. We demonstrate that the thickness of the sacrificial copper film, process temperature, and growth time essentially influence the integrity, quality, and disorder of the synthesized graphene. Atomic force microscopy and Kelvin probe force microscopy measurements revealed the presence of nano-agglomerates and charge puddles. The potential gradients measured over the sample surface confirmed that the deposited graphene film possessed a multilayered structure, which was modelled as an ensemble of randomly oriented conductive prolate ellipsoids. THz time domain spectroscopy measurements gave theacconductivity of the graphene flakes and homogenized graphitic films as being around 1200 S cm-1and 1000 S cm-1, respectively. Our approach offers a scalable fabrication of graphene structures composed of graphene flakes, which have effective conductivity sufficient for a wide variety of THz applications.

5.
J Neurochem ; 155(6): 650-661, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31872431

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder causing memory loss, language problems and behavioural disturbances. AD is associated with the accumulation of fibrillar amyloid-ß (Aß) and the formation of neurofibrillary tau tangles. Fibrillar Aß itself represents a danger-associated molecular pattern, which is recognized by specific microglial receptors. One of the key players is formation of the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome, whose activation has been demonstrated in AD patient brains and transgenic animal models of AD. Here, we investigated whether Aß oligomers or protofibrils that represent lower molecular aggregates prior to Aß deposition are able to activate the NLRP3 inflammasome and subsequent interleukin-1 beta (IL-1ß) release by microglia. In our study, we used Aß preparations of different sizes: small oligomers and protofibrils of which the structure was confirmed by atomic force microscopy. Primary microglial cells from C57BL/6 mice were treated with the respective Aß preparations and NLRP3 inflammasome activation, represented by caspase-1 cleavage, IL-1ß production, and apoptosis-associated speck-like protein containing a CARD speck formation was analysed. Both protofibrils and low molecular weight Aß aggregates induced a significant increase in IL-1ß release. Inflammasome activation was confirmed by apoptosis-associated speck-like protein containing a CARD speck formation and detection of active caspase-1. The NLRP3 inflammasome inhibitor MCC950 completely inhibited the Aß-induced immune response. Our results show that the NLRP3 inflammasome is activated not only by fibrillar Aß aggregates as reported before, but also by lower molecular weight Aß oligomers and protofibrils, highlighting the possibility that microglial activation by these Aß species may initiate innate immune responses in the central nervous system prior to the onset of Aß deposition. Cover Image for this issue: https://doi.org/10.1111/jnc.14773.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular/fisiologia , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Sensors (Basel) ; 20(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899745

RESUMO

Integration of living cells with nonbiological surfaces (substrates) of sensors, scaffolds, and implants implies severe restrictions on the interface quality and properties, which broadly cover all elements of the interaction between the living and artificial systems (materials, surface modifications, drug-eluting coatings, etc.). Substrate materials must support cellular viability, preserve sterility, and at the same time allow real-time analysis and control of cellular activity. We have compared new substrates based on graphene and pyrolytic carbon (PyC) for the cultivation of living cells. These are PyC films of nanometer thickness deposited on SiO2 and black silicon and graphene nanowall films composed of graphene flakes oriented perpendicular to the Si substrate. The structure, morphology, and interface properties of these substrates are analyzed in terms of their biocompatibility. The PyC demonstrates interface biocompatibility, promising for controlling cell proliferation and directional intercellular contact formation while as-grown graphene walls possess high hydrophobicity and poor biocompatibility. By performing experiments with C6 glioma cells we discovered that PyC is a cell-friendly coating that can be used without poly-l-lysine or other biopolymers for controlling cell adhesion. Thus, the opportunity to easily control the physical/chemical properties and nanotopography makes the PyC films a perfect candidate for the development of biosensors and 3D bioscaffolds.


Assuntos
Técnicas Biossensoriais , Células , Grafite , Dióxido de Silício , Carbono , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
7.
Biochim Biophys Acta ; 1858(9): 2070-2080, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27211243

RESUMO

We demonstrate the use of tethered bilayer lipid membranes (tBLMs) as an experimental platform for functional and structural studies of membrane associated proteins by electrochemical techniques. The reconstitution of the cholesterol-dependent cytolysin (CDC) pyolysin (PLO) from Trueperella pyogenes into tBLMs was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the EIS parameters of the tBLMs upon exposure to PLO solutions were consistent with the dielectric barrier damage occurring through the formation of water-filled pores in membranes. Parallel experiments involving a mutant version of PLO, which is able to bind to the membranes but does not form oligomer pores, strengthen the reliability of this methodology, since no change in the electrochemical impedance was observed. Complementary atomic force microscopy (AFM) and neutron reflectometry (NR) measurements revealed structural details of the membrane bound PLO, consistent with the structural transformations of the membrane bound toxins found for other cholesterol dependent cytolysins. In this work, using the tBLMs platform we also observed a protective effect of the dynamin inhibitor Dynasore against pyolysin as well as pneumolysin. An effect of Dynasore in tBLMs, which was earlier observed in experiments with live cells, confirms the biological relevance of the tBLMs models, as well as demonstrates the potential of the electrochemical impedance spectroscopy to quantify membrane damage by the pore forming toxins. In conclusion, tBLMs are a reliable and complementary method to explore the activity of CDCs in eukaryotic cells and to develop strategies to limit the toxic effects of CDCs.


Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , Membrana Eritrocítica/química , Proteínas Hemolisinas/química , Bicamadas Lipídicas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Espectroscopia Dielétrica , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Microscopia de Força Atômica , Mutação
8.
Langmuir ; 31(2): 846-57, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25525904

RESUMO

Structure of the self-assembled monolayers (SAMs) used to anchor phospholipid bilayers to surfaces affects the functional properties of the tethered bilayer membranes (tBLMs). SAMs of the same surface composition differing in the lateral distribution of the anchor molecule give rise to tBLMs of profoundly different defectiveness with residual conductance spanning 3 orders of magnitude. SAMs composed of anchors containing saturated alkyl chains, upon exposure to water (72 h), reconstruct to tightly packed clusters as deduced from reflection absorption infrared spectroscopy data and directly visualized by atomic force microscopy. The rearrangement into clusters results in an inability to establish highly insulating tBLMs on the same anchor layer. Unexpectedly, we also found that nanometer scale smooth gold film surfaces, populated predominantly with (111) facets, exhibit poor performance from the standpoint of the defectiveness of the anchored phospholipid bilayers, while corrugated (110) dominant surfaces produced SAMs with superior tethering quality. Although the detailed mechanism of cluster formation remains to be clarified, it appears that smooth surfaces favor lateral translocation of the molecular anchors, resulting in changes in functional properties of the SAMs. This work unequivocally establishes that conditions that favor cluster formation of the anchoring molecules in tBLM formation must be identified and avoided for the functional use of tBLMs in biomedical and diagnostic applications.


Assuntos
Membranas Artificiais , Bicamadas Lipídicas/química , Estrutura Molecular
9.
J Neurochem ; 126(5): 604-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23745639

RESUMO

Beta amyloid (Aß) oligomers are thought to contribute to the pathogenesis of Alzheimer's disease. However, clinical trials using Aß immunization were unsuccessful due to strong brain inflammation, the mechanisms of which are poorly understood. In this study we tested whether monoclonal antibodies to oligomeric Aß would prevent the neurotoxicity of Aß oligomers in primary neuronal-glial cultures. However, surprisingly,the antibodies dramatically increased the neurotoxicity of Aß. Antibodies bound to monomeric Aß fragments were non-toxic to cultured neurons, while antibodies to other oligomeric proteins: hamster polyomavirus major capsid protein, human metapneumovirus nucleocapsid protein, and measles virus nucleocapsid protein, strongly potentiated the neurotoxicity of their antigens. The neurotoxicity of antibody-antibody oligomeric antigen complexes was abolished by removal of the Fc region from the antibodies or by removal of microglia from cultures, and was accompanied by inflammatory activation and proliferation of the microglia in culture. In conclusion, we find that immune complexes formed by Aß oligomers or other oligomeric/multimeric antigens and their specific antibodies can cause death and loss of neurons in primary neuronal-glial cultures via Fc-dependent microglial activation. The results suggest that therapies resulting in antibodies to oligomeric Aß or oligomeric brain virus proteins should be used with caution or with suppression of microglial activation.


Assuntos
Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/toxicidade , Microglia/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Animais , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
10.
Biochim Biophys Acta Biomembr ; 1865(3): 184113, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36567033

RESUMO

Pro-inflammatory, calcium-binding protein S100A9 is localized in the cytoplasm of many cells and regulates several intracellular and extracellular processes. S100A9 is involved in neuroinflammation associated with the pathogenesis of Alzheimer's disease (AD). The number of studies on the impact of S100A9 in co-aggregation processes with amyloid-like proteins is increasing. However, there is still a lack of data on how this protein interacts with lipid membranes. We employed atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence measurements (Laurdan and Thioflavin-T) to study the interaction between protein and the membrane surface. We used lipid vesicles in bulk and planar tethered lipid bilayers as biomimetic membrane models. We demonstrated that the protein accumulates on negatively charged lipid bilayers but with no further loss of the bilayer's integrity. The most important result is that the initial adsorption and accumulation of apo-form of S100A9 on the lipid membrane surface is lipid phase-sensitive. The breaking down of raft-like and disappearance of gel-like domains indicate that protein incorporates into the hydrophobic part of the lipid bilayer. We observed the most noticeable loss of integrity in lipid bilayers constructed from a lipid mixture (brain total lipid extract). Understanding the function and interactions of these proteins in cellular environments might expand the development of new diagnostic and therapeutic approaches for AD or other related diseases.


Assuntos
Doença de Alzheimer , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas Nucleares/metabolismo
11.
J Colloid Interface Sci ; 633: 526-535, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36463821

RESUMO

The main function of a membrane is to control the exchange of matter between the surrounding regions. As such, accurate modeling of membranes is important to properly describe their properties. In many cases in both biological systems and technical applications, the membranes are composite structures where transport properties may vary between the different sub-regions of the membrane. In this work we develop a method based on Mesh analysis that is asymptotically exact and can describe diffusion in composite membrane structures. We do this by first reformulating a generalized Fick's law to include the effects from activity coefficient, diffusion coefficient, and solubility using a single condensed parameter. We then use the derived theory and Mesh analysis to, in essence, retrieve a finite element method approach. The calculated examples are based on a membrane structure that reassembles that of the brick and mortar structure of stratum corneum, the upper layer of our skin. Resulting concentration profiles from this procedure are then compared to experimental results for the distribution of different probes within intact stratum corneum, showing good agreement. Based on the derived approach we further investigate the impact from a gradient in the fluidity of the stratum corneum mortar lipids across the membrane, and find that it is substantial. We also show that anisotropic organisation of the lipid mortar can have large impact on the effective permeability compared to isotropic mortar lipids. Finally, we examine the effects of corneocyte swelling, and their lateral arrangement in the membrane on the overall membrane permeability.


Assuntos
Absorção Cutânea , Telas Cirúrgicas , Modelos Biológicos , Pele/metabolismo , Difusão , Permeabilidade , Lipídeos
12.
Langmuir ; 28(29): 10688-96, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22725977

RESUMO

Controlling the interfacial behavior and properties of lipid liquid crystalline nanoparticles (LCNPs) at surfaces is essential for their application for preparing functional surface coatings as well as understanding some aspects of their properties as drug delivery vehicles. Here we have studied a LCNP system formed by mixing soy phosphatidylcholine (SPC), forming liquid crystalline lamellar structures in excess water, and glycerol dioleate (GDO), forming reversed structures, dispersed into nanoparticle with the surfactant polysorbate 80 (P80) as stabilizer. LCNP particle properties were controlled by using different ratios of the lipid building blocks as well as different concentrations of the surfactant P80. The LCNP size, internal structure, morphology, and charge were characterized by dynamic light scattering (DLS), synchrotron small-ange X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and zeta potential measurements, respectively. With increasing SPC to GDO ratio in the interval from 35:65 to 60:40, the bulk lipid phase structure goes from reversed cubic micellar phase with Fd3m space group to reversed hexagonal phase. Adding P80 results in a successive shift toward more disorganized lamellar type of structures. This is also seen from cryo-TEM images for the LCNPs, where higher P80 ratios results in more extended lamellar layers surrounding the inner, more dense, lipid-rich particle core with nonlamellar structure. When put in contact with a solid silica surface, the LCNPs adsorb to form multilayer structures with a surface excess and thickness values that increase strongly with the content of P80 and decreases with increasing SPC:GDO ratio. This is reflected in both the adsorption rate and steady-state values, indicating that the driving force for adsorption is largely governed by attractive interactions between poly(ethylene oxide) (PEO) units of the P80 stabilizer and the silica surface. On cationic surface, i.e., silica modified with 3-aminopropltriethoxysilane (APTES), the slightly negatively charged LCNPs give rise to a very significant adsorption, which is relatively independent of LCNP composition. Finally, the dynamic thickness measurements indicate that direct adsorption of intact particles occurred on the cationic surface, while a slow buildup of the layer thickness with time is seen for the weakly interacting systems.


Assuntos
Cristais Líquidos/química , Nanopartículas/química , Adsorção , Diglicerídeos/química , Estrutura Molecular , Tamanho da Partícula , Fosfatidilcolinas/química , Polietilenoglicóis/química , Polissorbatos/química , Propriedades de Superfície , Tensoativos/química , Água/química
13.
Sci Rep ; 12(1): 1127, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064137

RESUMO

Atomic force microscopy (AFM) image analysis of supported bilayers, such as tethered bilayer membranes (tBLMs) can reveal the nature of the membrane damage by pore-forming proteins and predict the electrochemical impedance spectroscopy (EIS) response of such objects. However, automated analysis involving pore detection in such images is often non-trivial and can require AI-based object detection techniques. The specific object-detection algorithm we used to determine the defect coordinates in real AFM images was a convolutional neural network (CNN). Defect coordinates allow to predict the EIS response of tBLMs populated by the pore-forming toxins using finite element analysis (FEA) modeling. We tested if the accuracy of the CNN algorithm affected the EIS spectral features sensitive to defect densities and other physical parameters of tBLMs. We found that the EIS spectra can be predicted sufficiently well, however, systematic errors of characteristic spectral points were observed and need to be taken into account. Importantly, the comparison of predicted EIS curves with experimental ones allowed to estimate important physical parameters of tBLMs such as the specific resistance of submembrane reservoir. This reservoir separates phospholipid bilayer from the solid support. We found that the specific resistance of the reservoir amounts to [Formula: see text] [Formula: see text] which is approximately two orders of a magnitude higher compared to the specific resistance of the buffer bathing tBLMs studied in this work. We hypothesize that such effect may be related in part due to decreased concentration of ionic carriers in the submembrane due to decreased relative dielectric permittivity in this region.

14.
Sci Rep ; 12(1): 15548, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109551

RESUMO

CRISPR-Cas systems are prokaryotic adaptive immune systems that protect against phages and other invading nucleic acids. The evolutionary arms race between prokaryotes and phages gave rise to phage anti-CRISPR (Acr) proteins that act as a counter defence against CRISPR-Cas systems by inhibiting the effector complex. Here, we used a combination of bulk biochemical experiments, X-ray crystallography and single-molecule techniques to explore the inhibitory activity of AcrIF6 and AcrIF9 proteins against the type I-F CRISPR-Cas system from Aggregatibacter actinomycetemcomitans (Aa). We showed that AcrIF6 and AcrIF9 proteins hinder Aa-Cascade complex binding to target DNA. We solved a crystal structure of Aa1-AcrIF9 protein, which differ from other known AcrIF9 proteins by an additional structurally important loop presumably involved in the interaction with Cascade. We revealed that AcrIF9 association with Aa-Cascade promotes its binding to off-target DNA sites, which facilitates inhibition of CRISPR-Cas protection.


Assuntos
Bacteriófagos , Proteínas Associadas a CRISPR , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Cristalografia por Raios X , DNA/metabolismo
15.
J Phys Chem C Nanomater Interfaces ; 126(25): 10469-10477, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35800674

RESUMO

"Blinking" behavior of fluorophores, being harmful for the majority of super-resolved techniques, turns into a key property for stochastic optical fluctuation imaging and its modifications, allowing one to look at the fluorophores already used in conventional microscopy, such as graphene quantum dots, from a completely new perspective. Here we discuss fluorescence of aggregated ensembles of graphene quantum dots structured at submicron scale. We study temperature dependence and stochastic character of emission. We show that considered quantum dots ensembles demonstrate rather complicated temperature-dependent intermittent emission, that is, "blinking" with a tendency to shorten "blinking" times with the increase of temperature. We verify "blinking" mechanism demonstrating hysteresis of the optical response under pulsed excitation timed to expected rates of dots transition to "dark" nonemitting states. Experimental results are well fitted by a simple qualitative model of transitions to the "dark" states. The obtained results suggest that this type of standardized quantum dots and even their submicron-size agglomerations can be useful as controlled fluorophores for super-resolution microscopy and, particularly, for SOFI-like microscopy.

16.
Sci Rep ; 11(1): 4518, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633170

RESUMO

Argonaute (Ago) proteins are found in all three domains of life. The best-characterized group is eukaryotic Argonautes (eAgos), which are the core of RNA interference. The best understood prokaryotic Ago (pAgo) proteins are full-length pAgos. They are composed of four major structural/functional domains (N, PAZ, MID, and PIWI) and thereby closely resemble eAgos. It was demonstrated that full-length pAgos function as prokaryotic antiviral systems, with the PIWI domain performing cleavage of invading nucleic acids. However, the majority of identified pAgos are shorter and catalytically inactive (encode just MID and inactive PIWI domains), thus their action mechanism and function remain unknown. In this work we focus on AfAgo, a short pAgo protein encoded by an archaeon Archaeoglobus fulgidus. We find that in all previously solved AfAgo structures, its two monomers form substantial dimerization interfaces involving the C-terminal ß-sheets. Led by this finding, we have employed various biochemical and biophysical assays, including SEC-MALS, SAXS, single-molecule FRET, and AFM, to show that AfAgo is indeed a homodimer in solution, which is capable of simultaneous interaction with two DNA molecules. This finding underscores the diversity of prokaryotic Agos and broadens the range of currently known Argonaute-nucleic acid interaction mechanisms.


Assuntos
Archaeoglobus fulgidus , Proteínas Argonautas/química , DNA/química , Multimerização Proteica , Archaea/genética , Archaea/metabolismo , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Proteínas Argonautas/metabolismo , DNA/genética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X
17.
Sci Rep ; 9(1): 10606, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337831

RESUMO

The pore-forming toxins, inerolysin (INY) and vaginolysin (VLY), produced by vaginal bacteria Lactobacillus iners and Gardnerella vaginalis were studied using the artificial cholesterol-rich tethered bilayer membranes (tBLMs) by electrochemical techniques. The electrochemical impedance spectroscopy (EIS) of tBLMs attested for the toxin-induced impairment of the integrity of phospholipid membranes. This observation was in line with the atomic force microscopy data demonstrating formation of oligomeric protein assemblies in tBLMs. These assemblies exhibited different morphologies: VLY mostly formed complete rings, whereas INY produced arciform structures. We found that both EIS (membrane damage) and the surface plasmon resonance (protein binding) data obtained on tBLMs are in-line with the data obtained in human cell lysis experiments. EIS, however, is capable of capturing effects inaccessible for biological activity assays. Specifically, we found that the INY-induced damage of tBLMs is nearly a linear function of membrane cholesterol content, whereas VLY triggered significant damage only at high (50 mol%) cholesterol concentrations. The observed differences of INY and VLY activities on phospholipid membranes might have clinical importance: both toxin-producing bacteria have been found in healthy vagina and dysbiosis, suggesting the need for adaptation at different vaginal conditions. Our results broaden the possibilities of application of tBLMs in medical diagnostics.


Assuntos
Citotoxinas/metabolismo , Disbiose/metabolismo , Metabolismo dos Lipídeos , Vagina/microbiologia , Espectroscopia Dielétrica , Disbiose/microbiologia , Feminino , Gardnerella vaginalis/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactobacillus/metabolismo , Fosfolipídeos/metabolismo
18.
PLoS One ; 14(9): e0221563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509551

RESUMO

Effects of amyloid beta (Aß) oligomers on viability and function of cell lines such as NB4 (human acute promyelocytic leukemia), A549 (human lung cancer (adenocarcinomic alveolar basal epithelial tumor)) and MCF-7 (human breast cancer (invasive breast ductal carcinoma)) were investigated. Two types of Aß oligomers were used in the study. The first type was produced in the presence of oligomerization inhibitor, hexafluoroisopropanol (HFIP). The second type of amyloids was assembled in the absence of the inhibitor. The first type preparation was predominantly populated with dimers and trimers, while the second type contained mostly pentadecamers. These amyloid species exhibited different secondary protein structure with considerable amount of antiparallel ß sheet structural elements in HFIP oligomerized Aß mixtures. The effect of the cell growth inhibition, which was stronger in the case of HFIP Aß oligomers, was observed for all cell lines. Tests aiming at elucidating the effects of the amyloid species on cell cycles showed little differences between amyloid preparations. This prompts us to conclude that the effect on the cancer cell proliferation rate is less specific to the biological processes developing inside the cells during the proliferation. Therefore, cell growth inhibition may involve interactions with the peripheral parts of the cancer cells, such as a phospholipid membrane, and only in case of the NB4 cells, where accumulation of amyloid species inside the cells was detected, one may imply the opposite. In general, cancer cells were much less susceptible to the damaging effects of amyloid oligomers compared to earlier observations in mixed neuronal cell cultures.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Neoplasias/genética , Propanóis/efeitos adversos , Células A549 , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 4(5): 2643-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22515950

RESUMO

Investigation of nonlamellar nanoparticles formed by dispersion of self-assembled lipid liquid crystalline phases is stimulated by their many potential applications in science and technology; resulting from their unique solubilizing, encapsulating, and space-dividing nature. Understanding the interfacial behavior of lipid liquid crystalline nanoparticles (LCNPs) at surfaces can facilitate the exploitation of such systems for a number of potentially interesting uses, including preparation of functional surface coatings and uses as carriers of biologically active substances. We have studied the adsorption of LCNP, based on phosphatidylcholine/glycerol dioleate and Polysorbate 80 as stabilizers, at different model surfaces by use of in situ ellipsometry. The technique allows time-resolved monitoring of the layer thickness and the amount adsorbed, thereby providing insights into the restructuring of the lipid nanoparticle upon adsorption. The effects of solvent condition, electrolyte concentration, particle size, and surface chemistry on adsorbed layer properties were investigated. Furthermore, the internal structures of the particles were investigated by cryo-transmission electron microscopy and small angle X-ray diffraction on the corresponding liquid crystalline phases in excess water. LCNPs are shown to form well-defined layers at the solid-liquid interface with a structure and coverage that are determined by the interplay between the self-assembly properties of the lipids and lipid surface interactions, respectively. At the hydrophobic surface, hydrophobic interaction results in a structural transition from the original LCNP morphology to a monolayer structure at the interface. In contrast, at cationic and hydrophilic surfaces, relaxation is a relatively slow process, resulting in much thicker adsorbed layers, with thickness and adsorption behavior that to a greater extent reflect the original bulk LCNP properties.


Assuntos
Cristais Líquidos/química , Nanopartículas/química , Adsorção , Cátions/química , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Polissorbatos/química , Dióxido de Silício/química , Propriedades de Superfície
20.
Int J Pharm ; 391(1-2): 284-91, 2010 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-20214966

RESUMO

Lipid-based liquid crystalline nanoparticles (LCNPs) are interesting candidates for drug delivery applications, for instance as solubilizing or encapsulating carriers for intravenous (i.v.) drugs. Here it is important that the carriers are safe and tolerable and do not have, e.g. hemolytic activity. In the present study we have studied LCNP particles of different compositions with respect to their mixing behavior and membrane destabilizing effects in model and cell membrane systems. Different types of non-lamellar LCNPs were studied including cubic phase nanoparticles (Cubosome) based on glycerol monooleate (GMO), hexagonal phase nanoparticles (Hexosome) based on diglycerol monooleate (DGMO) and glycerol dioleate (GDO), sponge phase nanoparticles based on DGMO/GDO/polysorbate 80 (P80) and non-lamellar nanoparticles based on soy phosphatidylcholine (SPC)/GDO. Importantly, the LCNPs based on the long-chain monoacyl lipid, GMO, were shown to display a very fast and complete lipid mixing with model membranes composed of multilamellar SPC liposomes as assessed by a fluorescence energy transfer (FRET) assay. The result correlated well with pronounced hemolytic properties observed when the GMO-based LCNPs were mixed with rat whole blood. In sharp contrast, LCNPs based on mixtures of the long-chain diacyl lipids, SPC and GDO, were found to be practically inert towards both hemolysis in rat whole blood as well as lipid mixing with SPC model membranes. The LCNP dispersions based on a mixture of long-chain monoacyl and diacyl lipids, DGMO/GDO, displayed an intermediate behavior compared to the GMO and SPC/GDO-based systems with respect to both hemolysis and lipid mixing. It is concluded that GMO-based LCNPs are unsuitable for parenteral drug delivery applications (e.g. i.v. administration) while the SPC/GDO-based LCNPs exhibit good properties with limited lipid mixing and hemolytic activity. The correlation between results from lipid mixing or FRET experiments and the in vitro hemolysis data indicates that FRET assays can be one useful screening tool for parenteral drug delivery systems. It is argued that the hemolytic potential is correlated with chemical activity of the monomers in the mixtures.


Assuntos
Membrana Celular/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/efeitos adversos , Lipídeos/administração & dosagem , Cristais Líquidos/efeitos adversos , Nanopartículas/efeitos adversos , Animais , Hemólise/efeitos dos fármacos , Lipídeos/química , Lipossomos , Cristais Líquidos/química , Modelos Biológicos , Nanopartículas/química , Tamanho da Partícula , Ratos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA