Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Chem Soc Rev ; 41(7): 2849-66, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22182959

RESUMO

Gold nanoparticles (AuNPs) are some of the most extensively studied nanomaterials. Because of their unique optical, chemical, electrical, and catalytic properties, AuNPs have attracted enormous amount of interest for applications in biological and chemical detection and analysis. The purpose of this critical review is to provide the readers with an update on the recent developments in the field of AuNPs for sensing applications based on their optical properties. An overview of the optical properties of AuNPs is presented first, followed by a more detailed literature survey. As the last part of this review, we compare the advantages and disadvantages of each technique, briefly discuss their commercialization status, and some technical issues that remain to be solved in order to move the technique forward (151 references).


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Lasers , Nanopartículas Metálicas/química , Técnicas Biossensoriais/economia , Colorimetria , Humanos , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
2.
Nanotechnology ; 21(45): 455702, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20947937

RESUMO

Combining the intriguing optical properties of gold nanoparticles with the inherent physical and dynamic properties of polymers can give rise to interesting hybrid nanomaterials. In this study, we report the synthesis of poly(acrylic acid) (PAA)-capped gold nanoparticles. The polyelectrolyte-wrapped gold nanoparticles were fully characterized and studied via a combination of techniques, i.e. UV-vis and infrared spectroscopy, dark field optical microscopy, SEM imaging, dynamic light scattering and zeta potential measurements. Although PAA-capped nanoparticles have been previously reported, this study revealed some interesting aspects of the colloidal stability and morphological change of the polymer coating on the nanoparticle surface in an electrolytic environment, at various pH values and at different temperatures.


Assuntos
Resinas Acrílicas/química , Coloides/química , Ouro/química , Nanopartículas Metálicas/química , Concentração de Íons de Hidrogênio , Luz , Espalhamento de Radiação , Cloreto de Sódio/química , Espectrofotometria Ultravioleta
3.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114177

RESUMO

Gold nanoparticles offer the possibility to combine both imaging and therapy of otherwise difficult to treat tumors. To validate and further improve their potential, we describe the use of gold nanostars that were functionalized with a polyethyleneglycol-maleimide coating for in vitro and in vivo photoacoustic imaging (PAI), computed tomography (CT), as well as photothermal therapy (PTT) of cancer cells and tumor masses, respectively. Nanostar shaped particles show a high absorption coefficient in the near infrared region and have a hydrodynamic size in biological medium around 100 nm, which allows optimal intra-tumoral retention. Using these nanostars for in vitro labeling of tumor cells, high intracellular nanostar concentrations could be achieved, resulting in high PAI and CT contrast and effective PTT. By injecting the nanostars intratumorally, high contrast could be generated in vivo using PAI and CT, which allowed successful multi-modal tumor imaging. PTT was successfully induced, resulting in tumor cell death and subsequent inhibition of tumor growth. Therefore, gold nanostars are versatile theranostic agents for tumor therapy.

4.
Anal Chem ; 81(22): 9425-32, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19803497

RESUMO

Dynamic light scattering (DLS) is an analytical tool used routinely for measuring the hydrodynamic size of nanoparticles and colloids in a liquid environment. Gold nanoparticles (GNPs) are extraordinary light scatterers at or near their surface plasmon resonance wavelength. In this study, we demonstrate that DLS can be used as a very convenient and powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. The conjugation process between protein A and gold nanoparticles under different experimental conditions and the quality as well as the stability of the prepared conjugates were monitored and characterized systematically by DLS. Furthermore, the specific interactions between protein A-conjugated gold nanoparticles and a target protein, human IgG, can be detected and monitored in situ by measuring the average particle size change of the assay solution. For the first time, we demonstrate that DLS is able to directly and quantitatively measure the binding stoichiometry between a protein-conjugated GNP probe and a target analyte protein in solution.


Assuntos
Ouro/química , Imunoglobulina G/análise , Luz , Nanopartículas Metálicas/química , Espalhamento de Radiação , Proteína Estafilocócica A/química , Humanos
5.
Biomaterials ; 123: 15-23, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28152380

RESUMO

Gold nanoparticles hold great promise as anti-cancer theranostic agents against cancer by actively targeting the tumor cells. As this potential has been supported numerously during in vitro experiments, the effective application is hampered by our limited understanding and control of the interactions within complex in vivo biological systems. When these nanoparticles are exposed to a biological environment, their surfaces become covered with proteins and biomolecules, referred to as the protein corona, reducing the active targeting capabilities. We demonstrate a chemical strategy to overcome this issue by reducing the protein corona's thickness by blocking the active groups of the self-assembled monolayer on gold nanostars. An optimal blocking agent, 2-mercapto ethanol, has been selected based on charge and length of the carbon chain. By using a nanobody as a biological ligand of the human epidermal growth factor 2 receptor (HER2), the active targeting is demonstrated in vitro and in vivo in an experimental tumor model by using darkfield microscopy and photoacoustic imaging. In this study, we have established gold nanostars as a conceivable theranostic agent with a specificity for HER2-positive tumors.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Mercaptoetanol/química , Neoplasias Ovarianas/imunologia , Coroa de Proteína/química , Receptor ErbB-2/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Feminino , Ouro/química , Humanos , Nanopartículas Metálicas/química , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Anticorpos de Domínio Único/ultraestrutura , Nanomedicina Teranóstica/métodos , Resultado do Tratamento
6.
Int J Nanomedicine ; 11: 3703-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536107

RESUMO

The need for sensitive imaging techniques to detect tumor cells is an important issue in cancer diagnosis and therapy. Surface-enhanced Raman scattering (SERS), realized by chemisorption of compounds suitable for Raman spectroscopy onto gold nanoparticles, is a new method for detecting a tumor. As a proof of concept, we studied the use of biocompatible gold nanostars as sensitive SERS contrast agents targeting an ovarian cancer cell line (SKOV3). Due to a high intracellular uptake of gold nanostars after 6 hours of exposure, they could be detected and located with SERS. Using these nanostars for passive targeting after systemic injection in a xenograft mouse model, a detectable signal was measured in the tumor and liver in vivo. These signals were confirmed by ex vivo SERS measurements and darkfield microscopy. In this study, we established SERS nanostars as a highly sensitive contrast agent for tumor detection, which opens the potential for their use as a theranostic agent against cancer.


Assuntos
Materiais Biocompatíveis/química , Meios de Contraste/química , Nanopartículas Metálicas/química , Neoplasias/diagnóstico , Análise Espectral Raman/métodos , Animais , Linhagem Celular Tumoral , Ouro/química , Humanos , Camundongos , Camundongos Nus , Espectrofotometria Ultravioleta , Nanomedicina Teranóstica
7.
Chem Sci ; 6(11): 6564-6571, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090273

RESUMO

Benefiting from the prospect of extreme light localization, plasmonic metallic nanostructures are bringing advantages in many applications. However, for use in liquids, the hydrophobic nature of the metallic surface inhibits full wetting, which is related to contact line pinning in the nanostructures. In this work, we use a two-component droplet to overcome this problem. Due to a strong internal flow generated from the solutal Marangoni effect, these droplets can easily prime metallic nanostructures including sub-10 nm nanopores. We subsequently evaluate the local wetting performance of the plasmonic structures using surface enhanced Raman spectroscopy (SERS). Compared with other commonly used surface cleaning based wetting methods such as the oxygen plasma treatment, our two-component drop method is an efficient method in resolving the pinning of contact lines and is also non-destructive to samples. Thus the method described here primes plasmonic devices with guaranteed performances in liquid applications.

8.
Nanoscale ; 6(21): 12391-6, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25231127

RESUMO

The 193 nm deep UV immersion lithography is leveraged to fabricate highly dense and uniform arrays of Au-capped Si nanopillars on a 300 mm wafer level, and the substrates are applied in surface enhanced Raman spectroscopy for reliable molecule detection. Due to the sub-10 nm gap sizes and ultra-high array density with the lattice constant less than 100 nm, our nanopillar based substrates outperform the current commercial products in terms of the signal intensity, reproducibility and fabrication scale.

9.
Talanta ; 83(5): 1580-5, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21238755

RESUMO

In this study a double-bead sandwich assay, employing magnetic nanoparticles and gold nanoparticles is proposed. The magnetic nanoparticles allow specific capturing of the analyte in biological samples, while the optical properties of the gold nanoparticles provide the signal transduction. We demonstrated that a major improvement in the assay sensitivity was obtained by selecting an optimal gold nanoparticle size (60 nm). A detection limit of 5-8 ng/mL, a sensitivity of 0.6-0.8 (pg/mL)(-1) and a dynamic range of 3 orders of magnitude were achieved without any further amplification using the detection of prostate specific antigen in serum as a model system. The proposed assay has the ability to be easily implemented within a microfluidic device for point-of-care applications whereby the readout can be executed by a fast and cheap optical measurement.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Proteínas/química , Soro/química , Análise Química do Sangue , Humanos , Imunoensaio , Limite de Detecção , Magnetismo
10.
Langmuir ; 24(8): 3949-54, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18315018

RESUMO

The secret of a successful affinity biosensor partially hides in the chemical interface layer between the transducer system and the biological receptor molecules. Over the past decade, several methodologies for the construction of such interface layers have been developed on the basis of the deposition of self-assembled monolayers (SAMs) of alkanethiols on gold. Moreover, mixed SAMs of polyethylene oxide (PEO) containing thiols have been applied for the immobilization of biological receptors. Despite the intense research in the field of thiol SAMs, relatively little is known about their biosensing properties in correlation with their long-term stability. Especially the impact of the storage conditions on their biosensing characteristics has not been reported before to our knowledge. To address these issues, we prepared mixed PEO SAMs and tested their stability and biosensing performance in several storage conditions, i.e., air, N2, ethanol, phosphate buffer, and H2O. The quality of the SAMs was monitored as a function of time using various characterization techniques such as cyclic voltammetry, contact angle, grazing angle Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. In addition, the impact of the different storage conditions on the biosensor properties was investigated using surface plasmon resonance. Via the latter technique, the receptor immobilization, the analyte recognition, and the nonspecific binding were extensively studied using the prostate specific antigen as a model system. Our experiments showed that very small structural differences in the SAM can have a great impact in their final biosensing properties. In addition it was shown that the mixed SAMs stored in air or N2 are very stable and retain their biosensor properties for at least 30 days, while ethanol appeared to be the worst storage medium due to partial oxidation of the thiol headgroup. In conclusion, care must be taken to avoid SAM degradation during storage to retain typical SAM characteristics, which is very important for their general use in many proposed applications.


Assuntos
Polietilenoglicóis/química , Compostos de Sulfidrila/química , Técnicas Biossensoriais , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA