Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Trop ; 257: 107315, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969320

RESUMO

Tick-borne pathogens are a significant threat to human and animal health. Exposing the microbial composition of ticks elucidates their potential role in transmitting pathogens and causing disease as well as uncovering their potential interaction with the hosting tick. Our study focused on characterizing the tick microbiome of adult females and their lab-reared larval offspring of two prevalent tick species found on dogs in Nigeria [Rhipicephalus sanguineus s.l. tropical lineage (R. linnaei) and Haemaphysalis leachi]. We investigated the relative phyla abundance, the alpha and beta diversities of microbial communities comparing tick species, and different development stages (adults versus larvae). To the best of our knowledge, this is the first analysis on H. leachi microbiome described from West Africa. Our findings revealed a diverse microbiome with significant differences across species and their developmental stages, highlighting the dominance of the Proteobacteria phylum, followed by Firmicutes and Actinobacteriota. In contrast to H. leachi, for R. linnaei we observed significant differences in the alpha and beta diversities of the microbiome of larvae and adult females. Predominant bacterial genera were identified in R. linnaei, particularly Arsenophonus and Coxiella, which showed increased abundance in adult ticks. In H. leachi, other predominant genera were detected, including Sphingomonas, Comamonas, and Williamsia. Our results contribute to the understanding of microbiome dynamics within ticks and offers insights of tick physiology for addressing public health concerns and developing effective strategies for pathogen control.

2.
Front Endocrinol (Lausanne) ; 14: 1127536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378024

RESUMO

Introduction: Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods: To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results: The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion: Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.


Assuntos
Osteogênese , Crânio , Camundongos , Feminino , Animais , Crânio/metabolismo , Osteogênese/genética , Desenvolvimento Ósseo/genética , Osso Cortical , Expressão Gênica
3.
Front Nutr ; 10: 1270171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274212

RESUMO

We assessed the effects of supplementing milk fat globules (MFG) on the growth and development of the skeleton in rats fed a Western unbalanced diet (UBD). The UBD is high in sugar and fat, low in protein, fiber, and micronutrients, and negatively impacts health. The MFG-a complex lipid-protein assembly secreted into milk-has a unique structure and composition, which differs significantly from isolated and processed dietary ingredients. Rats consuming the UBD exhibited growth retardation and disrupted bone structural and mechanical parameters; these were improved by supplementation with small MFG. The addition of small MFG increased the efficiency of protein utilization for growth, and improved trabecular and cortical bone parameters. Furthermore, consumption of UBD led to a decreased concentration of saturated fatty acids and increased levels of polyunsaturated fatty acids (PUFA), particularly omega-6 PUFA, in the serum, liver, and adipose tissue. The addition of small MFG restored PUFA concentration and the ratio of omega-6 to omega-3 PUFA in bone marrow and adipose tissue. Finally, large but not small MFG supplementation affected the cecal microbiome in rats. Overall, our results suggest that natural structure MFG supplementation can improve metabolism and bone development in rats fed an UBD, with the effects depending on MFG size. Moreover, the benefits of small MFG to bone development and metabolism were not mediated by the microbiome, as the detrimental effects of an UBD on the microbiome were not mitigated by MFG supplementation.

4.
Matrix Biol ; 113: 100-121, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36261075

RESUMO

The gelatinases, a subgroup of the matrix metalloproteinases (MMPs) superfamily are composed of two members; MMP2 and MMP9. They are known to degrade gelatin among other components of the extracellular matrix. Recently, the two gelatinases were found to be necessary for neural crest cell migration and to compensate for each other loss in these cells. To characterize their involvement in the skeletal system, and to better reveal their individual or common roles, we have generated double knockout (dKO) mice, lacking both MMP2 and MMP9. Comprehensive analysis of the skeleton morphological and mechanical parameters at postnatal day (P) 0, P21, 3 months (M) and 8M of age, revealed an unexpected distinct role for each gelatinase; MMP2 was found to be involved merely in intramembranous ossification which led to a smaller skull and inferior cortical parameters upon its loss, while MMP9 was found to affect only the endochondral ossification process, which led to shorter long-bones in its absence. Importantly, the dKO mice demonstrated a combination of both the skull and long bone phenotypes as found in the single-KOs, and not a severer additive phenotype. Transcriptome analysis on the cortical bone, the growth plate and the skull frontal bone, found many genes that were differentially expressed as a direct or indirect result of MMP-loss, and reinforced the specific and distinct role of each gelatinase in each bone type. Altogether, these results suggest that although both gelatinases share the same substrates and are highly expressed in flat and long bones, they are indispensable and control separately the development of different bones.


Assuntos
Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Crânio , Animais , Camundongos , Lâmina de Crescimento/crescimento & desenvolvimento , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Crânio/crescimento & desenvolvimento
5.
iScience ; 24(5): 102464, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34013174

RESUMO

Osteoarthritis (OA) is the most prevalent chronic joint disease that affects a large proportion of the elderly population. Chondrogenic progenitor cells (CPCs) reside in late-stage OA cartilage tissue, producing a fibrocartilaginous extracellular matrix; these cells can be manipulated in vitro to deposit proteins of healthy articular cartilage. CPCs are under the control of SOX9 and RUNX2. In our earlier studies, we showed that a knockdown of RUNX2 enhanced the chondrogenic potential of CPCs. Here we demonstrate that CPCs carrying a knockout of RAB5C, a protein involved in endosomal trafficking, exhibited elevated expression of multiple chondrogenic markers, including the SOX trio, and increased COL2 deposition, whereas no changes in COL1 deposition were observed. We report RAB5C as an attractive target for future therapeutic approaches designed to increase the COL2 content in the diseased joint.

6.
J Histochem Cytochem ; 67(2): 117-127, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30431382

RESUMO

Osteoarthritis (OA) is the most common chronic joint disease and leads to the degradation of the extracellular matrix by an imbalance between anabolic and catabolic processes. TGF-ß3 (transforming growth factor beta-3) and epidermal growth factor (EGF) influence the osteochondrogenic potential of chondrocytes. In this study, we compared the expression of mediators and receptors in the TGF-ß3 and EGF pathways, as well as biglycan (BGN), in healthy and diseased chondrocytes. Furthermore, we used chondrogenic progenitor cells (CPCs) for in vitro stimulation and knockdown experiments to elucidate the effects of TGF-ß3 and EGF on the chondrogenic potential. Our results demonstrate that the expression of TGF-beta receptor type-1 (TGFBRI) and epidermal growth factor receptor (EGFR) is altered in diseased chondrocytes as well as in CPCs. Moreover, TGF-ß3 and EGF stimulation influenced the expression levels of BGN, SRY (sex determining region Y)-box 9 (SOX9), and Runt-related transcription factor 2 (RUNX2) in CPCs. Therefore, changes in TGFBRI and EGFR expression likely contribute to the degenerative and regenerative effects seen in late stages of OA.


Assuntos
Biglicano/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fator de Crescimento Epidérmico/genética , Regulação da Expressão Gênica , Fatores de Transcrição SOX9/genética , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta3/genética , Biomarcadores/metabolismo , Diferenciação Celular , Condrogênese , Feminino , Humanos , Masculino , Transdução de Sinais , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA