Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Langmuir ; 39(5): 1885-1896, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693216

RESUMO

Ferrocifens, lipophilic organometallic complexes, comprise a biologically active redox motif [ferrocenyl-ene-p-phenol] which confers very interesting cytotoxic properties to this family. However, because of their highly lipophilic nature, a formulation stage is required before being administered in vivo. In recent decades, ferrocifen lipid nanocapsules (LNCs) have been successfully formulated and have demonstrated anticancer activity on multidrug-resistant cancers in several mice and rat models (glioblastoma, breast cancer, and metastatic melanoma). A recent family of ferrocifens (succinimidoalkyl-ferrociphenols, including P722) appears to be most efficacious on several resistant cancer cell lines, with IC50 values in the nanomolar range together with promising in vivo results on murine ovarian cancer models. As LNCs are composed of an oily core (caprylic/capric triglycerides), modulation of the succinimido-ferrociphenol lipophilicity could be a valuable approach toward improving the drug loading in LNCs. As the drug loading of the diphenol P722 in LNCs was low, it was structurally modified to increase its lipophilicity and thereby the payload in LNCs. Chemical modification led to a series of five succinimido-ferrocifens. Results confirmed that these slight structural modifications led to increased drug loading in LNCs for all ferrocifens, with no reduction of their cytotoxicity on the SKOV3 ovarian cancer cell line. Interestingly, encapsulation of two of the ferrocifens, diester P769 and monophenolic ester (E)-P998, led to the formation of a gel. This was unprecedented behavior, a phenomenon that could be rationalized in terms of the positioning of ferrocifens in LNCs as shown by the decrease of interfacial tension measurements at the water/oil interface. Moreover, these results highlighted the importance of obtaining a gel of this particular motif, in which the acetylated phenolic ring and the succinimidoalkyl moieties are mutually cis relative to the central double bond. Promising perspectives to use these ferrocifen-loaded LNCs to treat glioblastoma could be readily envisaged by local application of the gel in the cavity after tumor resection.


Assuntos
Glioblastoma , Nanocápsulas , Neoplasias Ovarianas , Ratos , Camundongos , Animais , Feminino , Humanos , Nanocápsulas/química , Glioblastoma/tratamento farmacológico , Lipídeos/química , Estrutura Molecular , Sistemas de Liberação de Medicamentos , Neoplasias Ovarianas/tratamento farmacológico
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569665

RESUMO

We sought to determine the cyclodextrins (CDs) best suited to solubilize a patented succinimido-ferrocidiphenol (SuccFerr), a compound from the ferrociphenol family having powerful anticancer activity but low water solubility. Phase solubility experiments and computational modelling were carried out on various CDs. For the latter, several CD-SuccFerr complexes were built starting from combinations of one or two CD(s) where the methylation of CD oxygen atoms was systematically changed to end up with a database of ca. 13 k models. Modelling and phase solubility experiments seem to indicate the predominance of supramolecular assemblies of SuccFerr with two CDs and the superiority of randomly methylated ß-cyclodextrins (RAMEßCDs). In addition, modelling shows that there are several competing combinations of inserted moieties of SuccFerr. Furthermore, the models show that ferrocene can contribute to high stabilization by making atypical hydrogen bonds between Fe and the hydroxyl groups of CDs (single bond with one OH or clamp with two OH of the same glucose unit).


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Ciclodextrinas/química , Ligação de Hidrogênio , Simulação por Computador , Solubilidade
3.
Molecules ; 27(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35889422

RESUMO

The [ferrocene-ene-phenol] motif has been identified as the pharmacophore responsible for the anticancer activity of the family of ferrocene-based molecules coined ferrocifens, owing to its unique redox properties. The addition of imide entities to the historical ferrociphenol scaffold tremendously enhanced the cytotoxic activity of a large panel of cancer cell cultures and preliminary studies showed that the reduction of one of the carbonyl groups of the imide groups to the corresponding α-hydroxylactams only slightly affected the antiproliferative activity. As a continuation to these studies, we took advantage of the facile conversion of α-hydroxylactams to highly electrophilic N-acyliminium ions to graft various substituents to the imide motif of phthalimido ferrocidiphenol. Cell viability studies showed that the newly synthesized compounds showed diverse cytotoxic activities on two breast cancer cell lines, while only one compound was significantly less active on the non-tumorigenic cell line hTERT-RPE1.


Assuntos
Antineoplásicos , Compostos Ferrosos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/farmacologia , Humanos , Imidas/farmacologia , Metalocenos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
4.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889527

RESUMO

SuccFerr (N-[4-ferrocenyl,5-5-bis (4-hydroxyphenyl)-pent-4-enyl]-succinimide) has remarkable antiproliferative effects in vitro, attributed to the formation of a stabilized quinone methide. The present article reports in vivo results for a possible preclinical study. SuccFerr is lipophilic and insoluble in water, so the development of a formulation to obviate this inconvenience was necessary. This was achieved by complexation with randomly methylated cyclodextrins (RAMEßCDs). This supramolecular water-soluble system allowed the in vivo experiments below to proceed. Application of SuccFerr on the glioblastoma cancer cell line U87 indicates that it affects the cellular cycle by inducing a blockade at G0/G1 phase, linked to apoptosis, and another one at the S phase, associated with senescence. Using healthy Fischer rats, we show that both intravenous and subcutaneous SuccFerr: RAMEßCD administration at 5 mg/kg lacks toxic effects on several organs. To reach lethality, doses higher than 200 mg/kg need to be administered. These results prompted us to perform an ectopic in vivo study at 1 mg/kg i.v. ferrocidiphenol SuccFerr using F98 cells xenografted in rats. Halting of cancer progression was observed after six days of injection, associated with an immunological defense response linked to the active principle. These results demonstrate that the properties of the selected ferrocidiphenol SuccFerr transfer successfully to in vivo conditions, leading to interesting therapeutic perspectives based on this chemistry.


Assuntos
Ciclodextrinas , Glioblastoma , Animais , Apoptose , Linhagem Celular Tumoral , Ciclodextrinas/química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Ratos , Água/farmacologia
5.
Chembiochem ; 21(20): 2974-2981, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32453493

RESUMO

The design and first enantioselective synthesis of a series of chiral ferrocifens and ferrociphenols was realised by enantioselective palladium-catalysed intramolecular direct C-H bond activation followed by McMurry coupling. Biological evaluation revealed moderate anticancer activities on breast cancer cells and evidence of chiral discrimination between enantiomers. Treatment of the novel ferrocifens with Ag2 O revealed that these systems are unable to form a neutral quinone methide, yet still demonstrate marked antiproliferative properties against both the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 cell lines. This bioactivity arises from two mechanisms: Fenton-type chemistry and the anti-estrogenic activity associated with the tamoxifen-like structure.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos Ferrosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Catálise , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Humanos , Estrutura Molecular , Paládio/química , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Angew Chem Int Ed Engl ; 58(25): 8421-8425, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30977944

RESUMO

Ferrociphenols, especially those possessing a heterocycle at the terminus of an aliphatic chain, display strong anticancer activity through a novel redox mechanism that generates active metabolites such as quinone methides (QMs). X-ray crystallography and UV/Vis spectroscopy reveal that the specific lone pair (lp)-π interaction between a carbonyl group of the imide and the quinone motif of the QM plays an important role in the exceptional cytotoxic behaviour of their imido-ferrociphenol precursors. This intramolecular lp-π interaction markedly enhanced the stability of the QMs and lowered the pKa values of the corresponding phenol/phenolate couples. As the first example of such a non-covalent interaction that stabilizes QMs remotely, it not only expands the scope of the lp-π interaction in supramolecular chemistry, but also represents a new mode of stabilization of a QM. This unprecedented application of lp-π interactions in imido-ferrociphenol anticancer drug candidates may also have great potential in drug discovery and organocatalyst design.


Assuntos
Antineoplásicos/química , Compostos Ferrosos/química , Imidas/química , Indolquinonas/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
7.
Angew Chem Int Ed Engl ; 58(11): 3461-3465, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30663197

RESUMO

A series of tamoxifen-like metallocifens of the group-8 metals (Fe, Ru, and Os) has strong antiproliferative activity on the triple-negative breast cancer cells (MDA-MB-231). To shed light on the mechanism of action of these molecules, synchrotron radiation X-ray fluorescence nanoimaging studies were performed on cells exposed to osmocenyl-tamoxifen (Oc-OH-Tam) to disclose its intracellular distribution. High-resolution mapping of the lipophilic Oc-OH-Tam in cells revealed its preferential accumulation in the endomembrane system. This is consistent with the ability of the amino nitrogen chain of the compounds to be protonated at physiological pH and responsible for electrostatic interactions between Oc-OH-Tam and membranes. A comprehensive scenario is proposed that provides new insight into the cellular behavior and activation of Oc-OH-Tam and advances the understanding of its mechanism of action.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Compostos Organometálicos/química , Tamoxifeno/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Complexos de Coordenação/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Ferro/química , Ligantes , Imagem Molecular/métodos , Sondas Moleculares/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Osmio/química , Radiografia , Rutênio/química , Eletricidade Estática , Síncrotrons , Raios X
8.
Pharmacol Res ; 126: 54-65, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28159700

RESUMO

Metastatic melanoma has been described as a highly aggressive cancer with low sensibility to chemotherapeutic agents. New types of drug, such as metal-based drugs (ferrocifens) have emerged and could represent an alternative for melanoma treatment since they show interesting anticancer potential. Furthermore, molecular analysis has evidenced the role of apoptosis in the low sensibility of melanomas and especially of the key regulator, Bcl-2. The objective of this study was to combine two strategies in the same lipid nanocapsules (LNCs): i) gene therapy to modulate anti-apoptotic proteins by the use of Bcl-2 siRNA, and ii) ferrocifens as a new type of anticancer agent. The efficient gene silencing with LNCs was verified by the specific extinction of Bcl-2 in melanoma cells. The cellular toxicity of ferrocifens (ferrociphenol (FcDiOH) or Ansa-FcDiOH) was demonstrated, showing higher efficacy than dacarbazine. Interestingly, the association of siBcl-2 LNCs with Ansa-FcDiOH demonstrated a significant effect on melanoma cell viability. Moreover, the co-encapsulation of siRNA and ferrocifens was successfully performed into LNCs for animal experiments. A reduction of tumor volume and mass was proved after siBcl-2 LNC treatment and Ansa-FcDiOH LNC treatment, individually (around 25%). Finally, the association of both components into the same LNCs increased the reduction of tumor volume to about 50% compared to the control group. In conclusion, LNCs appeared to provide a promising tool for the co-encapsulation of a metal-based drug and siRNA.


Assuntos
Antineoplásicos/farmacologia , Compostos Ferrosos/farmacologia , Lipídeos/química , Melanoma/tratamento farmacológico , Nanocápsulas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Terapia Genética/métodos , Humanos , Melanoma/metabolismo , Camundongos , Camundongos Nus , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Chem Soc Rev ; 44(24): 8802-17, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26486993

RESUMO

Despite current developments in therapeutics focusing on biotechnologically-oriented species, the unflagging utility of small molecules or peptides in medicine is still producing strong results. In 2014 for example, of the 41 new medicines authorized for sale, 33 belonged to the category of small molecules, while in 2013 they represented 24 of 27, according to the FDA. This can be explained as the result of recent forays into new or long-neglected areas of chemistry. Medicinal organometallic chemistry can provide us with an antimalarial against resistant parasitic strains, as attested by the phase II clinical development of ferroquine, with a new framework for conceptual advances based on three-dimensional space-filling, and with redox or indeed catalytic intracellular properties. In this context, bioferrocene species with antiproliferative potential have for several years been the subject of sustained effort, based on some initial successes and on the nature of ferrocene as a stable aromatic, with low toxicity, low cost, and possessing reversible redox properties. We show here the different antitumoral approaches offered by ferrocifen derivatives, originally simple derivatives of tamoxifen, which over the course of their development have proved to possess remarkable structural and mechanistic diversity. These entities act via various targets, some of which have been identified, that are triggered according to the concentration of the products. They also act according to the nature of the cancer cells and their functionality, by mechanistic pathways that can operate either synergistically or not, in successive, concomitant or sequential ways, depending for example on newly identified signaling pathways inducing senescence or apoptosis. Here we present a first attempt to rationalize the behavior of these entities with various anticancer targets.


Assuntos
Antineoplásicos/farmacologia , Compostos Ferrosos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Ferrosos/química , Humanos , Estrutura Molecular
10.
Angew Chem Int Ed Engl ; 55(35): 10431-4, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27276169

RESUMO

Ferrociphenols (FCs) and their oxidized, electrophilic quinone methide metabolites (FC-QMs) are organometallic compounds related to tamoxifen that exhibit strong antiproliferative properties. To evaluate the reactivity of FC-QMs toward cellular nucleophiles, we studied their reaction with selected thiols. A series of new compounds resulting from the addition of these nucleophiles, the FC-SR adducts, were thus synthesized and completely characterized. Such conjugates are formed upon metabolism of FCs by liver microsomes in the presence of NADPH and thiols. Some of the FC-SR adducts exhibit antiproliferative properties comparable to those of their FC precursors. Under oxidizing conditions they either revert to their FC-QM precursors or transform into new quinone methides (QMs) containing the SR moiety, FC-SR-QM. These results provide interesting data about the reactivity and mechanism of antiproliferative effects of FCs, and also open the way to a new series of organometallic antitumor compounds.

11.
Mem Inst Oswaldo Cruz ; 110(8): 981-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26602875

RESUMO

This work reports the in vitro activity against Plasmodium falciparum blood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.


Assuntos
Antimaláricos/farmacologia , Complexos de Coordenação/síntese química , Compostos Ferrosos/farmacologia , Compostos Organometálicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Rutênio/farmacologia , Animais , Antimaláricos/síntese química , Linhagem Celular , Cromatografia em Camada Fina , Complexos de Coordenação/farmacologia , Citotoxinas/farmacologia , Compostos Ferrosos/síntese química , Haplorrinos , Células Hep G2/parasitologia , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Compostos Organometálicos/síntese química , Rutênio/química , Tamoxifeno/química
12.
Angew Chem Int Ed Engl ; 54(35): 10230-3, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26179051

RESUMO

The synthesis and chemical oxidation profile of a new generation of ferrocifen derivatives with strong antiproliferative behavior in vitro is reported. In particular, the hydroxypropyl derivative HO(CH2 )3 C(Fc)=C(C6 H4 OH)2 (3 b) exhibited exceptional antiproliferative activity against the cancer cell lines HepG2 and MDA-MB-231 TNBC, with IC50 values of 0.07 and 0.11 µM, respectively. Chemical oxidation of 3 b yielded an unprecedented tetrahydrofuran-substituted quinone methide (QM) via internal cyclization of the hydroxyalkyl chain, whereas the corresponding alkyl analogue CH3 CH2 -C(Fc)=C(C6 H4 OH)2 merely formed a vinyl QM. The ferrocenyl group in 3 b plays a key role, not only as an intramolecular reversible redox "antenna", but also as a stabilized carbenium ion "modulator". The presence of the oxygen heterocycle in 3 b-QM enhances its stability and leads to a unique chemical oxidation profile, thus revealing crucial clues for deciphering its mechanism of action in vivo.


Assuntos
Proliferação de Células/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Indolquinonas/química , Compostos Organometálicos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Cromatografia Líquida de Alta Pressão , Ciclização , Compostos Ferrosos/química , Células Hep G2 , Humanos , Compostos Organometálicos/química , Oxirredução , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
13.
Nanomedicine ; 10(8): 1667-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24842766

RESUMO

In this work, a novel ferrocenyl complex (ansa-FcdiOH) was assessed for brain tumor therapy through stealth lipid nanocapsules (LNCs). Stealth LNCs, prepared according to a one-step process, showed rapid uptake by cancer cells and extended blood circulation time. The ferrocenyl complex was successfully encapsulated into these LNCs measuring 40 nm with a high loading capacity (6.4%). In vitro studies showed a potent anticancer effect of ansa-FcdiOH on 9L cells with a low IC50 value (0.1 µM) associated with an oxidative stress and a dose-dependent alteration of the cell cycle. Repeated intravenous injections of stealth ansa-FcdiOH LNCs in ectopic glioma bearing rats induced a significant tumor growth inhibition, supported by a reduced number of proliferative cells in tumors compared to control group. Additionally, no liver damage was observed in treated animals. These results indicated that stealth ansa-FcdiOH LNCs might be considered as a potential new approach for cancer chemotherapy. FROM THE CLINICAL EDITOR: In this study, a novel ferrocenyl complex was assessed for brain tumor therapy through stealth lipid nanocapsules, demonstrating no liver damage, and superior tumor volume reduction compared to saline and stealth lipid nanocapsules alone in an ectopic glioma model.


Assuntos
Compostos Ferrosos/química , Compostos Ferrosos/uso terapêutico , Glioma/tratamento farmacológico , Nanocápsulas/química , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Feminino , Nanomedicina , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio
14.
Molecules ; 19(7): 10350-69, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036149

RESUMO

In the course of the preparation of a series of ferrocenyl derivatives of diethylstilbestrol (DES), in which one of the 4-hydroxyphenyl moieties was replaced by a ferrocenyl group, the McMurry reaction of chloropropionylferrocene with a number of mono-aryl ketones unexpectedly yielded the hydroxylated ferrocenyl DES derivatives, 5a-c, in poor yields (10%-16%). These compounds showed high activity on the hormone-independent breast cancer cell line MDA-MB-231 with IC50 values ranging from 0.14 to 0.36 µM. Surprisingly, non-hydroxylated ferrocenyl DES, 4, showed only an IC50 value of 1.14 µM, illustrating the importance of the hydroxyethyl function in this promising new series. For comparison, McMurry reactions of the shorter chain analogue chloroacetylferrocene were carried out to see the difference in behaviour with mono-aryl ketones versus a diaryl ketone. The effect of changing the length of the alkyl chain adjacent to the phenolic substituent of the hydroxylated ferrocenyl DES was studied, a mechanistic rationale to account for the unexpected products is proposed, and the antiproliferative activities of all of these compounds on MDA-MB-231 cells lines were measured and compared. X-ray crystal structures of cross-coupled products and of pinacol-pinacolone rearrangements are reported.


Assuntos
Antineoplásicos/química , Compostos Ferrosos/química , Fenol/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Combinatória , Humanos , Concentração Inibidora 50 , Metalocenos , Estrutura Molecular
15.
J Med Chem ; 67(2): 1209-1224, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38156614

RESUMO

Ferrocidiphenols possessing appropriate substituents in the aliphatic chain have very promising anticancer properties, but a systematic approach to deciphering their diversified metabolic behavior has so far been lacking. Herein, we show that a series of novel ferrocidiphenols bearing different hydroxyalkyl substituents exhibit strong anticancer activity as revealed in a range of in vitro and in vivo experiments. Moreover, they display diversified oxidative transformation profiles very distinct from those of previous complexes, shown by the use of chemical and enzymatic methods and in cellulo and in vivo metabolism studies. In view of this phenomenon, unprecedented chemo-evolutionary sequences that connect all the ferrocidiphenol-related intermediates and analogues have been established. In addition, a comprehensive density functional theory (DFT) study has been performed to decipher the metabolic diversification profiles of these complexes and demonstrate the delicate modulation of carbenium ions by the ferrocenyl moiety, via either α- or ß-positional participation.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/química , Oxirredução , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia
16.
Cancers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37760418

RESUMO

Cancers classified as multidrug-resistant (MDR) are a family of diseases with poor prognosis despite access to increasingly sophisticated treatments. Several mechanisms explain these resistances involving both tumor cells and their microenvironment. It is now recognized that a multi-targeting approach offers a promising strategy to treat these MDR tumors. Inhibition of thioredoxin reductase (TrxR), a key enzyme in maintaining redox balance in cells, is a well-identified target for this approach. Auranofin was the first inorganic gold complex to be described as a powerful inhibitor of TrxR. In this review, we will first recall the main results obtained with this metallodrug. Then, we will focus on organometallic complexes reported as TrxR inhibitors. These include gold(I), gold(III) complexes and metallocifens, i.e., organometallic complexes of Fe and Os derived from tamoxifen. In these families of complexes, similarities and differences in the molecular mechanisms of TrxR inhibition will be highlighted. Finally, the possible relationship between TrxR inhibition and cytotoxicity will be discussed and put into perspective with their mode of action.

17.
Chemistry ; 18(21): 6581-7, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22492462

RESUMO

The complete oxidation sequence of a model for ferrociphenols, a new class of anticancer drug candidate, is reported. Cyclic voltammetry was used to monitor the formation of oxidation intermediates on different timescales, thereby allowing the electrochemical characterization of both the short-lived and stable species obtained from the successive electron-transfer and deprotonation steps. The electrochemical preparation of the ferrocenium intermediate enabled a stepwise voltammetric determination of the stable oxidation compounds obtained upon addition of a base as well as the electron stoichiometry observed for the overall oxidation process. A mechanism has been established from the electrochemical data, which involves a base-promoted intramolecular electron transfer between the phenol and the ferrocenium cation. The resulting species is further oxidized then deprotonated to yield a stable quinone methide. To further characterize the transient species successively formed during the two-electron oxidation of the ferrociphenol to its quinone methide, EPR was used to monitor the fate of the paramagnetic species generated upon addition of imidazole to the electrogenerated ferrocenium. The study revealed the passage from an iron-centered to a carbon-centered radical, which is then oxidized to yield the quinone methide, namely, the species that interacts with proteins and so forth under biological conditions.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Indolquinonas/síntese química , Indolquinonas/farmacologia , Modelos Moleculares , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Humanos , Indolquinonas/química , Estrutura Molecular , Oxirredução , Tamoxifeno/farmacologia
18.
Int J Pharm ; 626: 122164, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36089209

RESUMO

Ovarian cancer is one of the deadliest epithelial malignancies in women, owing to the multidrug resistance that restricts the success of conventional chemotherapy, carboplatin and paclitaxel. High grade serous ovarian carcinoma can be classified into two subtypes, the chemosensitive High OXPHOS and the Low OXPHOS tumour, less sensitive to chemotherapy. This difference of treatment efficacy could be explained by the redox status of these tumours, High OXPHOS exhibiting a chronic oxidative stress and an accumulation of reactive oxygen species. Ferrocifens, bio-organometallic compounds, are believed to be ROS producers with a good cytotoxicity on ovarian cancer cell lines. The aim of this study was to evaluate the in vivo efficacy of ferrocifen stealth lipid nanocapsules on High and Low OXPHOS ovarian Patient-Derived Xenograft models, alone or in combination to standard chemotherapy. Accordingly, two ferrocifens, P53 and P722, were encapsulated in stealth LNCs. The treatment by stealth P722-LNCs in combination with standard chemotherapy induced, with a concentration eight time lower than in stealth P53-LNCs, similar tumour reduction on a Low OXPHOS model, allowing us to conclude that P722 could be a leading ferrocifen to treat ovarian cancer. This combination of treatments may represent a promising synergistic approach to treat resistant ovarian adenocarcinoma.


Assuntos
Adenocarcinoma , Antineoplásicos , Nanocápsulas , Compostos Organometálicos , Neoplasias Ovarianas , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carboplatina/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Compostos Ferrosos , Humanos , Lipídeos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel , Espécies Reativas de Oxigênio , Proteína Supressora de Tumor p53
19.
Eur J Med Chem ; 234: 114202, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35279607

RESUMO

Ferrociphenols are characterized by the presence of a biologically active redox motif [ferrocenyl-ene-p-phenol], and are known to exhibit anticancer properties. Recent studies have identified a new series of ferrociphenols that bear an imido-type heterocycle at the terminus of a short alkyl chain, and which showed very strong antiproliferativity against multiple types of cancer cells. This work describes the syntheses and an SAR study of ferrociphenols bearing a diversity-based range of nitrogen-containing substituents on the alkyl chain. Preliminary oxidative metabolism experiments and ROS-related bioactivity measurements were also carried out to probe the origin of the cytotoxicity of the imido-ferrociphenols. Furthermore, an interesting dimerization phenomenon was observed in the X-ray crystal structure of the 2,3-naphthalenedicarboximidopropyl-ferrocidiphenol, 21, which may be a factor in decreasing its rate of oxidation to form the corresponding quinone methide, 21-QM, thereby affecting its antitumor activity. These results suggest that both the formation rate and the stability of QMs could affect the antiproliferative activity of their ferrociphenol precursors.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/química , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Humanos , Oxirredução , Fenóis/química
20.
Pharm Res ; 28(12): 3189-98, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21691892

RESUMO

PURPOSE: To study a passive targeting strategy, via the enhanced permeability and retention effect following systemic administration of lipid nanocapsules (LNCs) loaded with ferrociphenol, FcdiOH. METHODS: Long chains of polyethylene glycol (DSPE-mPEG2000) were incorporated onto the surface of LNCs by post-insertion technique. Stealth properties of LNCs were investigated by in vitro complement consumption and macrophage uptake, and in vivo pharmacokinetics in healthy rats. Antitumour effect of FcdiOH-loaded LNCs was evaluated in subcutaneous and intracranial 9L gliosarcoma rat models. RESULTS: LNCs and DSPE-mPEG2000-LNCs presented low complement activation and weak macrophage uptake. DSPE-mPEG2000-LNCs exhibited prolonged half-life and extended area under the curve in healthy rats. In a subcutaneous gliosarcoma model, a single intravenous injection of FcdiOH-LNCs (400 µL, 2.4 mg/rat) considerably inhibited tumour growth when compared to the control. DSPE-mPEG2000-FcdiOH-LNCs exhibited a strong antitumour effect by nearly eradicating the tumour by the end of the study. In intracranial gliosarcoma model, treatment with DSPE-mPEG2000-FcdiOH-LNCs and FcdiOH-LNCs statistically improved median survival time (28 and 27.5 days, respectively) compared to the control (25 days). CONCLUSION: These results demonstrate the interesting perspectives for the systemic treatment of glioma thanks to bio-organometallic chemotherapy via lipid nanocapsules.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Compostos Ferrosos/administração & dosagem , Compostos Ferrosos/uso terapêutico , Gliossarcoma/tratamento farmacológico , Nanocápsulas/química , Animais , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Feminino , Lipídeos/química , Polietilenoglicóis/química , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA