RESUMO
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Assuntos
Melhoramento Vegetal , Triticum , Aclimatação , Adaptação Fisiológica , Resposta ao Choque TérmicoRESUMO
Microbial inoculants are gaining importance for attaining sustainable agricultural production systems. Nutrient supply capacity of soil is diminishing continuously owing to soil erosions, degradation, deposition of salts, undesirable elements and metals, water scarcity or excess and imbalanced nutrient supply system. Numerous complementary microbial inoculation combinations are contributing immensely in the management of plant nutrients by way of fixation, solubilization or transformation in soil. Thus, biological wastes and microbial inoculants are alternatives for nutrient demands to bridge future gaps in. A consortium of microorganisms provides enabling and congenial option to maintain their usable capacity for sufficient durations that heads to the positive impact on the microbial activity of soil for desired activities at the target sites. Increased application of agro-chemicals results in deleterious effect on biological system and dependence of future agriculture on these will lead to deterioration in soil health, threats of pollution of water bodies and cumulative effect of these is making production system highly vulnerable and unstable consequently leading to heavy load on the fiscal system. To ameliorate negative impacts, microorganisms are strongly emerging as alternatives for conserving productive capacity for sustainable productions and financial balance of economies. Microbial inoculants that have assumed definite and significant roles for their specificity and necessity and their use in various combinations have emerged as viable and sustainable options to maintain and even enrich the soil health. Since these microbial inoculants are used under varied farming situations and diverse climates with heterogeneous management skills, their efficacies under field conditions remain variable. Thus, it is never-ending process to identify solutions for constraints and application difficulties and further identify newer microbial inoculants for unexplored areas. Adequate timely and quality access of these inoculants to end users is equally important along with developing their skills to utilize these for witnessing desirable and visible impacts.