Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Metab Eng ; 44: 325-336, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29129823

RESUMO

Inducible gene expression systems are widely used in microbial host strains for protein and commodity chemical production because of their extensive characterization and ease of use. However, some of these systems have disadvantages such as leaky expression, lack of dynamic control, and the prohibitively high costs of inducers associated with large-scale production. Quorum sensing (QS) systems in bacteria control gene expression in response to population density, and the LuxI/R system from Vibrio fischeri is a well-studied example. A QS system could be ideal for biofuel production strains as it is self-regulated and does not require the addition of inducer compounds, which reduce operational costs for inducer. In this study, a QS system was developed for inducer-free production of the biofuel compound bisabolene from engineered E. coli. Seven variants of the Sensor plasmid, which carry the luxI-luxR genes, and four variants of the Response plasmid, which carry bisabolene producing pathway genes under the control of the PluxI promoter, were designed for optimization of bisabolene production. Furthermore, a chromosome-integrated QS strain was engineered with the best combination of Sensor and Response plasmid and produced bisabolene at a titer of 1.1g/L without addition of external inducers. This is a 44% improvement from our previous inducible system. The QS strain also displayed higher homogeneity in gene expression and isoprenoid production compared to an inducible-system strain.


Assuntos
Aliivibrio fischeri/genética , Escherichia coli , Engenharia Metabólica , Percepção de Quorum , Proteínas Repressoras , Sesquiterpenos/metabolismo , Transativadores , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo
2.
Appl Environ Microbiol ; 80(2): 497-505, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212572

RESUMO

Major efforts in bioenergy research have focused on producing fuels that can directly replace petroleum-derived gasoline and diesel fuel through metabolic engineering of microbial fatty acid biosynthetic pathways. Typically, growth and pathway induction are conducted under aerobic conditions, but for operational efficiency in an industrial context, anaerobic culture conditions would be preferred to obviate the need to maintain specific dissolved oxygen concentrations and to maximize the proportion of reducing equivalents directed to biofuel biosynthesis rather than ATP production. A major concern with fermentative growth conditions is elevated NADH levels, which can adversely affect cell physiology. The purpose of this study was to identify homologs of Escherichia coli FabG, an essential reductase involved in fatty acid biosynthesis, that display a higher preference for NADH than for NADPH as a cofactor. Four potential NADH-dependent FabG variants were identified through bioinformatic analyses supported by crystallographic structure determination (1.3- to 2.0-Å resolution). In vitro assays of cofactor (NADH/NADPH) preference in the four variants showed up to ≈ 35-fold preference for NADH, which was observed with the Cupriavidus taiwanensis FabG variant. In addition, FabG homologs were overexpressed in fatty acid- and methyl ketone-overproducing E. coli host strains under anaerobic conditions, and the C. taiwanensis variant led to a 60% higher free fatty acid titer and 75% higher methyl ketone titer relative to the titers of the control strains. With further engineering, this work could serve as a starting point for establishing a microbial host strain for production of fatty acid-derived biofuels (e.g., methyl ketones) under anaerobic conditions.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/biossíntese , NAD/metabolismo , Proteínas Recombinantes/metabolismo , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Anaerobiose , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Microbiologia Industrial/métodos , Dados de Sequência Molecular , NADP/metabolismo , Conformação Proteica , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos
3.
Biochemistry ; 50(34): 7426-39, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21776967

RESUMO

Bacterial aromatic polyketides that include many antibiotic and antitumor therapeutics are biosynthesized by the type II polyketide synthase (PKS), which consists of 5-10 stand-alone enzymatic domains. Hedamycin, an antitumor antibiotic polyketide, is uniquely primed with a hexadienyl group generated by a type I PKS followed by coupling to a downstream type II PKS to biosynthesize a 24-carbon polyketide, whose C9 position is reduced by hedamycin type II ketoreductase (hedKR). HedKR is homologous to the actinorhodin KR (actKR), for which we have conducted extensive structural studies previously. How hedKR can accommodate a longer polyketide substrate than the actKR, and the molecular basis of its regio- and stereospecificities, is not well understood. Here we present a detailed study of hedKR that sheds light on its specificity. Sequence alignment of KRs predicts that hedKR is less active than actKR, with significant differences in substrate/inhibitor recognition. In vitro and in vivo assays of hedKR confirmed this hypothesis. The hedKR crystal structure further provides the molecular basis for the observed differences between hedKR and actKR in the recognition of substrates and inhibitors. Instead of the 94-PGG-96 motif observed in actKR, hedKR has the 92-NGG-94 motif, leading to S-dominant stereospecificity, whose molecular basis can be explained by the crystal structure. Together with mutations, assay results, docking simulations, and the hedKR crystal structure, a model for the observed regio- and stereospecificities is presented herein that elucidates how different type II KRs recognize substrates with different chain lengths, yet precisely reduce only the C9-carbonyl group. The molecular features of hedKR important for regio- and stereospecificities can potentially be applied to biosynthesize new polyketides via protein engineering that rationally controls polyketide ketoreduction.


Assuntos
Oxirredutases do Álcool/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteína de Transporte de Acila/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Quercetina/farmacologia , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato
4.
Biochemistry ; 50(21): 4638-49, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21506596

RESUMO

Type II polyketides include antibiotics such as tetracycline and chemotherapeutics such as daunorubicin. Type II polyketides are biosynthesized by the type II polyketide synthase (PKS) that consists of 5-10 stand-alone domains. In many type II PKSs, the type II ketoreductase (KR) specifically reduces the C9-carbonyl group. How the type II KR achieves such a high regiospecificity and the nature of stereospecificity are not well understood. Sequence alignment of KRs led to a hypothesis that a well-conserved 94-XGG-96 motif may be involved in controlling the stereochemistry. The stereospecificity of single-, double-, and triple-mutant combinations of P94L, G95D, and G96D were analyzed in vitro and in vivo for the actinorhodin KR (actKR). The P94L mutation is sufficient to change the stereospecificity of actKR. Binary and ternary crystal structures of both wild-type and P94L actKR were determined. Together with assay results, docking simulations, and cocrystal structures, a model for stereochemical control is presented herein that elucidates how type II polyketides are introduced into the substrate pocket such that the C9-carbonyl can be reduced with high regio- and stereospecificities. The molecular features of actKR important for regio- and stereospecificities can potentially be applied in biosynthesizing new polyketides via protein engineering that rationally controls polyketide keto reduction.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Cristalização , Primers do DNA , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Homologia de Sequência de Aminoácidos
5.
PLoS One ; 11(3): e0151087, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26975050

RESUMO

Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present study was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and experimental results developed in this study to elucidate the biosynthetic pathway that produces unique and intriguing ladderane lipids.


Assuntos
Bactérias Anaeróbias/genética , Proteínas de Bactérias/biossíntese , Ciclobutanos/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Óperon , Proteínas de Bactérias/genética , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
6.
Chem Biol ; 20(10): 1225-34, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24035284

RESUMO

In the actinorhodin type II polyketide synthase, the first polyketide modification is a regiospecific C9-carbonyl reduction, catalyzed by the ketoreductase (actKR). Our previous studies identified the actKR 94-PGG-96 motif as a determinant of stereospecificity. The molecular basis for reduction regiospecificity is, however, not well understood. In this study, we examined the activities of 20 actKR mutants through a combination of kinetic studies, PKS reconstitution, and structural analyses. Residues have been identified that are necessary for substrate interaction, and these observations have suggested a structural model for this reaction. Polyketides dock at the KR surface and are steered into the enzyme pocket where C7-C12 cyclization is mediated by the KR before C9-ketoreduction can occur. These molecular features can potentially serve as engineering targets for the biosynthesis of novel, reduced polyketides.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteína de Transporte de Acila/metabolismo , Oxirredutases do Álcool/genética , Antraquinonas/química , Antraquinonas/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Ciclização , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , NADP/metabolismo , Oxirredução , Policetídeos/metabolismo , Estereoisomerismo , Especificidade por Substrato , Tetralonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA