Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105582, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141762

RESUMO

The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.


Assuntos
Proteínas Ativadoras de GTPase , Mitocôndrias , Mapas de Interação de Proteínas , Proteínas de Protozoários , Toxoplasma , Humanos , Sítios de Ligação , Calorimetria , Cromatografia em Gel , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
J Biol Chem ; 299(1): 102764, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463963

RESUMO

The formation of complexes between Rab11 and its effectors regulates multiple aspects of membrane trafficking, including recycling and ciliogenesis. WD repeat-containing protein 44 (WDR44) is a structurally uncharacterized Rab11 effector that regulates ciliogenesis by competing with prociliogenesis factors for Rab11 binding. Here, we present a detailed biochemical and biophysical characterization of the WDR44-Rab11 complex and define specific residues mediating binding. Using AlphaFold2 modeling and hydrogen/deuterium exchange mass spectrometry, we generated a molecular model of the Rab11-WDR44 complex. The Rab11-binding domain of WDR44 interacts with switch I, switch II, and the interswitch region of Rab11. Extensive mutagenesis of evolutionarily conserved residues in WDR44 at the interface identified numerous complex-disrupting mutations. Using hydrogen/deuterium exchange mass spectrometry, we found that the dynamics of the WDR44-Rab11 interface are distinct from the Rab11 effector FIP3, with WDR44 forming a more extensive interface with the switch II helix of Rab11 compared with FIP3. The WDR44 interaction was specific to Rab11 over evolutionarily similar Rabs, with mutations defining the molecular basis of Rab11 specificity. Finally, WDR44 can be phosphorylated by Sgk3, with this leading to reorganization of the Rab11-binding surface on WDR44. Overall, our results provide molecular detail on how WDR44 interacts with Rab11 and how Rab11 can form distinct effector complexes that regulate membrane trafficking events.


Assuntos
GTP Fosfo-Hidrolases , Quinase I-kappa B , Modelos Moleculares , Proteínas rab de Ligação ao GTP , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Quinase I-kappa B/metabolismo , Ligação Proteica , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo , Espectrometria de Massas
3.
Biochem Soc Trans ; 50(6): 1607-1617, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36454645

RESUMO

A large amount of the human proteome is composed of highly dynamic regions that do not adopt a single static conformation. These regions are defined as intrinsically disordered, and they are found in a third of all eukaryotic proteins. They play instrumental roles in many aspects of protein signaling, but can be challenging to characterize by biophysical methods. Intriguingly, many of these regions can adopt stable secondary structure upon interaction with a variety of binding partners, including proteins, lipids, and ligands. This review will discuss the application of Hydrogen-deuterium exchange mass spectrometry (HDX-MS) as a powerful biophysical tool that is particularly well suited for structural and functional characterization of intrinsically disordered regions in proteins. A focus will be on the theory of hydrogen exchange, and its practical application to identify disordered regions, as well as characterize how they participate in protein-protein and protein-membrane interfaces. A particular emphasis will be on how HDX-MS data can be presented specifically tailored for analysis of intrinsically disordered regions, as well as the technical aspects that are critical to consider when designing HDX-MS experiments for proteins containing intrinsically disordered regions.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Humanos , Medição da Troca de Deutério/métodos , Conformação Proteica , Espectrometria de Massas/métodos , Proteínas/química , Hidrogênio/química
4.
EMBO Rep ; 21(2): e48441, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31829496

RESUMO

The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.


Assuntos
Enterovirus , Animais , Enterovirus/genética , Enterovirus/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Células Sf9 , Replicação Viral
5.
Cardiol Young ; 32(2): 230-235, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33966676

RESUMO

Patients with single-ventricle CHD undergo a series of palliative surgeries that culminate in the Fontan procedure. While the Fontan procedure allows most patients to survive to adulthood, the Fontan circulation can eventually lead to multiple cardiac complications and multi-organ dysfunction. Care for adolescents and adults with a Fontan circulation has begun to transition from a primarily cardiac-focused model to care models, which are designed to monitor multiple organ systems, and using clues from this screening, identify patients who are at risk for adverse outcomes. The complexity of care required for these patients led our centre to develop a multidisciplinary Fontan Management Programme with the primary goals of earlier detection and treatment of complications through the development of a cohesive network of diverse medical subspecialists with Fontan expertise.


Assuntos
Técnica de Fontan , Cardiopatias Congênitas , Coração Univentricular , Adolescente , Adulto , Técnica de Fontan/efeitos adversos , Cardiopatias Congênitas/cirurgia , Humanos , Cuidados Paliativos
6.
Psychiatr Q ; 92(3): 851-862, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33219428

RESUMO

Timely use of pharmacological interventions to treat acute agitation has the potential to decrease physical restraint use. The aim of this study is to determine if adherence to standardized pharmacological recommendations for the treatment of acutely agitated pediatric patients decreases physical restraint use. Additionally, this study aims to identify predictors of physical restraint use and describe treatment related adverse events. This is a retrospective chart review of patient visits between September 1, 2016 and August 31, 2017. Patient visits were included if the patient presented to the pediatric emergency department, met ICD-10 codes, and received pharmacologic management or physical restraint to treat acute agitation. The differences in rate of physical restraint was assessed between patients treated according to the standardized pharmacological recommendations and patients who were not. 447 patients were included with a mean age of 13 years. No significant difference in physical restraint use was found when standardized pharmacological recommendations were followed compared to when they were not (P = 0.16). Only presentation on day shift when compared to evening shift resulted in increased odds of being restrained (OR 2.03; 95% CI 1.18, 3.50). Nine adverse events possibly related to medications were identified with none considered to be of significant clinical concern. Standardized pharmacological treatment recommendations was not associated with a decrease in physical restraint use for agitated patients presenting to the pediatric emergency department. The pharmacologic strategies utilized were generally safe and well tolerated in this patient population.


Assuntos
Agitação Psicomotora , Restrição Física , Adolescente , Algoritmos , Criança , Serviço Hospitalar de Emergência , Humanos , Agitação Psicomotora/tratamento farmacológico , Estudos Retrospectivos
7.
Proc Natl Acad Sci U S A ; 114(8): 1982-1987, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167755

RESUMO

Activated PI3K Delta Syndrome (APDS) is a primary immunodeficiency disease caused by activating mutations in either the leukocyte-restricted p110δ catalytic (PIK3CD) subunit or the ubiquitously expressed p85α regulatory (PIK3R1) subunit of class IA phosphoinositide 3-kinases (PI3Ks). There are two classes of APDS: APDS1 that arises from p110δ mutations that are analogous to oncogenic mutations found in the broadly expressed p110α subunit and APDS2 that occurs from a splice mutation resulting in p85α with a central deletion (Δ434-475). As p85 regulatory subunits associate with and inhibit all class IA catalytic subunits, APDS2 mutations are expected to similarly activate p110α, ß, and δ, yet APDS2 largely phenocopies APDS1 without dramatic effects outside the immune system. We have examined the molecular mechanism of activation of both classes of APDS mutations using a combination of biochemical assays and hydrogen-deuterium exchange mass spectrometry. Intriguingly, we find that an APDS2 mutation in p85α leads to substantial basal activation of p110δ (>300-fold) and disrupts inhibitory interactions from the nSH2, iSH2, and cSH2 domains of p85, whereas p110α is only minimally basally activated (∼2-fold) when associated with mutated p85α. APDS1 mutations in p110δ (N334K, E525K, E1021K) mimic the activation mechanisms previously discovered for oncogenic mutations in p110α. All APDS mutations were potently inhibited by the Food and Drug Administration-approved p110δ inhibitor idelalisib. Our results define the molecular basis of how PIK3CD and PIK3R1 mutations result in APDS and reveal a potential path to treatment for all APDS patients.


Assuntos
Domínio Catalítico/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Inibidores Enzimáticos/farmacologia , Síndromes de Imunodeficiência/genética , Fosfatidilinositol 3-Quinases/genética , Purinas/farmacologia , Quinazolinonas/farmacologia , Membrana Celular/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase , Ensaios Enzimáticos , Inibidores Enzimáticos/uso terapêutico , Mutação com Ganho de Função , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Espectrometria de Massas/métodos , Modelos Moleculares , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Doenças da Imunodeficiência Primária , Conformação Proteica , Purinas/uso terapêutico , Quinazolinonas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Deleção de Sequência
8.
Proc Natl Acad Sci U S A ; 114(5): E679-E688, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096352

RESUMO

The vast majority of proteins are posttranslationally altered, with the addition of covalently linked sugars (glycosylation) being one of the most abundant modifications. However, despite the hydrolysis of protein peptide bonds by peptidases being a process essential to all life on Earth, the fundamental details of how peptidases accommodate posttranslational modifications, including glycosylation, has not been addressed. Through biochemical analyses and X-ray crystallographic structures we show that to hydrolyze their substrates, three structurally related metallopeptidases require the specific recognition of O-linked glycan modifications via carbohydrate-specific subsites immediately adjacent to their peptidase catalytic machinery. The three peptidases showed selectivity for different glycans, revealing protein-specific adaptations to particular glycan modifications, yet always cleaved the peptide bond immediately preceding the glycosylated residue. This insight builds upon the paradigm of how peptidases recognize substrates and provides a molecular understanding of glycoprotein degradation.


Assuntos
Peptídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Escherichia coli/genética , Fetuínas/metabolismo , Glicopeptídeos/metabolismo , Glicosilação , Mucinas/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional
9.
J Biol Chem ; 293(47): 18296-18308, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30282808

RESUMO

Fucoidans are chemically complex and highly heterogeneous sulfated marine fucans from brown macro algae. Possessing a variety of physicochemical and biological activities, fucoidans are used as gelling and thickening agents in the food industry and have anticoagulant, antiviral, antitumor, antibacterial, and immune activities. Although fucoidan-depolymerizing enzymes have been identified, the molecular basis of their activity on these chemically complex polysaccharides remains largely uninvestigated. In this study, we focused on three glycoside hydrolase family 107 (GH107) enzymes: MfFcnA and two newly identified members, P5AFcnA and P19DFcnA, from a bacterial species of the genus Psychromonas Using carbohydrate-PAGE, we show that P5AFcnA and P19DFcnA are active on fucoidans that differ from those depolymerized by MfFcnA, revealing differential substrate specificity within the GH107 family. Using a combination of X-ray crystallography and NMR analyses, we further show that GH107 family enzymes share features of their structures and catalytic mechanisms with GH29 α-l-fucosidases. However, we found that GH107 enzymes have the distinction of utilizing a histidine side chain as the proposed acid/base catalyst in its retaining mechanism. Further interpretation of the structural data indicated that the active-site architectures within this family are highly variable, likely reflecting the specificity of GH107 enzymes for different fucoidan substructures. Together, these findings begin to illuminate the molecular details underpinning the biological processing of fucoidans.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Gammaproteobacteria/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Gammaproteobacteria/química , Gammaproteobacteria/genética , Glicosídeo Hidrolases/genética , Modelos Moleculares , Família Multigênica , Polissacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/genética
10.
Pediatr Blood Cancer ; 66(6): e27719, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900794

RESUMO

Asparaginase therapy induces a transient antithrombin III (ATIII) deficiency, which contributes to the risk of asparaginase-induced thrombosis. At Cincinnati Children's Hospital Medical Center, management of asparaginase-induced thrombosis includes ATIII supplementation during therapeutic anticoagulation with enoxaparin. Due to the expense associated with ATIII, a capped dosing approach for ATIII was evaluated in this population. Peak ATIII levels were obtained following capped doses to evaluate response. In this pilot evaluation, 11 patients received a total of 138 capped doses for a total cost savings of $803 782. This pilot evaluation represents the first reported analysis of capped ATIII dosing in oncology patients.


Assuntos
Deficiência de Antitrombina III/tratamento farmacológico , Deficiência de Antitrombina III/economia , Antitrombina III/economia , Asparaginase/efeitos adversos , Análise Custo-Benefício , Enoxaparina/economia , Trombose/tratamento farmacológico , Adolescente , Adulto , Anticoagulantes/administração & dosagem , Anticoagulantes/economia , Antitrombina III/administração & dosagem , Antitrombina III/metabolismo , Deficiência de Antitrombina III/induzido quimicamente , Criança , Quimioterapia Combinada , Enoxaparina/administração & dosagem , Feminino , Seguimentos , Humanos , Masculino , Projetos Piloto , Prognóstico , Estudos Retrospectivos , Trombose/enzimologia , Trombose/patologia , Adulto Jovem
11.
J Lipid Res ; 59(3): 462-474, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326159

RESUMO

Sphingosine kinase 1 (SK1) is required for production of sphingosine-1-phosphate (S1P) and thereby regulates many cellular processes, including cellular growth, immune cell trafficking, and inflammation. To produce S1P, SK1 must access sphingosine directly from membranes. However, the molecular mechanisms underlying SK1's direct membrane interactions remain unclear. We used hydrogen/deuterium exchange MS to study interactions of SK1 with membrane vesicles. Using the CRISPR/Cas9 technique to generate HCT116 cells lacking SK1, we explored the effects of membrane interface disruption and the function of the SK1 interaction site. Disrupting the interface resulted in reduced membrane association and decreased cellular SK1 activity. Moreover, SK1-dependent signaling, including cell invasion and endocytosis, was abolished upon mutation of the membrane-binding interface. Of note, we identified a positively charged motif on SK1 that is responsible for electrostatic interactions with membranes. Furthermore, we demonstrated that SK1 uses a single contiguous interface, consisting of an electrostatic site and a hydrophobic site, to interact with membrane-associated anionic phospholipids. Altogether, these results define a composite domain in SK1 that regulates its intrinsic ability to bind membranes and indicate that this binding is critical for proper SK1 function. This work will allow for a new line of thinking for targeting SK1 in disease.


Assuntos
Lipídeos/química , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Sítios de Ligação , Membrana Celular/metabolismo , Medição da Troca de Deutério , Células HCT116 , Humanos , Lisofosfolipídeos/biossíntese , Espectrometria de Massas , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Transdução de Sinais , Esfingosina/biossíntese , Esfingosina/metabolismo
12.
J Biol Chem ; 292(29): 12256-12266, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28515318

RESUMO

Class IA PI3Ks are involved in the generation of the key lipid signaling molecule phosphatidylinositol 3,4,5-trisphosphate (PIP3), and inappropriate activation of this pathway is implicated in a multitude of human diseases, including cancer, inflammation, and primary immunodeficiencies. Class IA PI3Ks are activated downstream of the Ras superfamily of GTPases, and Ras-PI3K interaction plays a key role in promoting tumor formation and maintenance in Ras-driven tumors. Investigating the detailed molecular events in the Ras-PI3K interaction has been challenging because it occurs on a membrane surface. Here, using maleimide-functionalized lipid vesicles, we successfully generated membrane-resident HRas and evaluated its effect on PI3K signaling in lipid kinase assays and through analysis with hydrogen-deuterium exchange MS. We screened all class IA PI3K isoforms and found that HRas activates both p110α and p110δ isoforms but does not activate p110ß. The p110α and p110δ activation by Ras was synergistic with activation by a soluble phosphopeptide derived from receptor tyrosine kinases. Hydrogen-deuterium exchange MS revealed that membrane-resident HRas, but not soluble HRas, enhances conformational changes associated with membrane binding by increasing membrane recruitment of both p110α and p110δ. Together, these results afford detailed molecular insight into the Ras-PI3K signaling complex, provide a framework for screening Ras inhibitors, and shed light on the isoform specificity of Ras-PI3K interactions in a native membrane context.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sistemas do Segundo Mensageiro , Substituição de Aminoácidos , Animais , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/genética , Medição da Troca de Deutério , Ativação Enzimática , Humanos , Lipossomos , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Mutação Puntual , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
13.
J Biol Chem ; 292(47): 19469-19477, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28972141

RESUMO

Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm Kd measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a Kd of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction.


Assuntos
Miosina não Muscular Tipo IIA/química , Proteínas de Protozoários/química , Toxoplasma/metabolismo , Animais , Cálcio/metabolismo , Movimento Celular , Cristalografia por Raios X , Miosina não Muscular Tipo IIA/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento
14.
J Chem Inf Model ; 58(2): 464-471, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29320178

RESUMO

The success of targeted covalent inhibitors in the global pharmaceutical industry has led to a resurgence of covalent drug discovery. However, covalent inhibitor design for flexible binding sites remains a difficult task due to a lack of methodological development. Here, we compared covalent docking to empirical electrophile screening against the highly dynamic target K-RasG12C. While the overall hit rate of both methods was comparable, we were able to rapidly progress a docking hit to a potent irreversible covalent binder that modifies the inactive, GDP-bound state of K-RasG12C. Hydrogen-deuterium exchange mass spectrometry was used to probe the protein dynamics of compound binding to the switch-II pocket and subsequent destabilization of the nucleotide-binding region. SOS-mediated nucleotide exchange assays showed that, contrary to prior switch-II pocket inhibitors, these new compounds appear to accelerate nucleotide exchange. This study highlights the efficiency of covalent docking as a tool for the discovery of chemically novel hits against challenging targets.


Assuntos
Simulação de Acoplamento Molecular , Nucleotídeos/química , Proteínas ras/química , Fenômenos Biofísicos , Descoberta de Drogas , Espectrometria de Massas , Conformação Proteica
15.
Biochemistry ; 56(25): 3178-3183, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28621541

RESUMO

There is growing interest in reversible and irreversible covalent inhibitors that target noncatalytic amino acids in target proteins. With a goal of targeting oncogenic K-Ras variants (e.g., G12D) by expanding the types of amino acids that can be targeted by covalent inhibitors, we survey a set of electrophiles for their ability to label carboxylates. We functionalized an optimized ligand for the K-Ras switch II pocket with a set of electrophiles previously reported to react with carboxylates and characterized the ability of these compounds to react with model nucleophiles and oncogenic K-Ras proteins. Here, we report that aziridines and stabilized diazo groups preferentially react with free carboxylates over thiols. Although we did not identify a warhead that potently labels K-Ras G12D, we were able to study the interactions of many electrophiles with K-Ras, as most of the electrophiles rapidly label K-Ras G12C. We characterized the resulting complexes by crystallography, hydrogen/deuterium exchange, and differential scanning fluorimetry. Our results both demonstrate the ability of a noncatalytic cysteine to react with a diverse set of electrophiles and emphasize the importance of proper spatial arrangements between a covalent inhibitor and its intended nucleophile. We hope that these results can expand the range of electrophiles and nucleophiles of use in covalent protein modulation.


Assuntos
Aziridinas/farmacologia , Ácidos Carboxílicos/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Compostos de Sulfidrila/metabolismo , Humanos , Conformação Proteica
16.
J Biol Chem ; 291(46): 24085-24095, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27601469

RESUMO

Aberrant glycosylation and the overexpression of specific carbohydrate epitopes is a hallmark of many cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy and diagnostics. Wisteria floribunda agglutinin (WFA) is a legume lectin that recognizes terminal N-acetylgalactosaminides with high affinity. WFA preferentially binds the disaccharide LacdiNAc (ß-d-GalNAc-[1→4]-d-GlcNAc), which is associated with tumor malignancy in leukemia, prostate, pancreatic, ovarian, and liver cancers and has shown promise in cancer glycobiomarker detection. The mechanism of specificity for WFA recognition of LacdiNAc is not fully understood. To address this problem, we have determined affinities and structure of WFA in complex with GalNAc and LacdiNAc. Affinities toward Gal, GalNAc, and LacdiNAc were measured via surface plasmon resonance, yielding KD values of 4.67 × 10-4 m, 9.24 × 10-5 m, and 5.45 × 10-6 m, respectively. Structures of WFA in complex with LacdiNAc and GalNAc have been determined to 1.80-2.32 Å resolution. These high resolution structures revealed a hydrophobic groove complementary to the GalNAc and, to a minor extent, to the back-face of the GlcNAc sugar ring. Remarkably, the contribution of this small hydrophobic surface significantly increases the observed affinity for LacdiNAc over GalNAc. Tandem MS sequencing confirmed the presence of two isolectin forms in commercially available WFA differing only in the identities of two amino acids. Finally, the WFA carbohydrate binding site is similar to a homologous lectin isolated from Vatairea macrocarpa in complex with GalNAc, which, unlike WFA, binds not only αGalNAc but also terminal Ser/Thr O-linked αGalNAc (Tn antigen).


Assuntos
Biomarcadores Tumorais/química , Lactose/análogos & derivados , Lectinas de Plantas/química , Wisteria/química , Cristalografia por Raios X , Humanos , Lactose/química , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
17.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746453

RESUMO

The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIα/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.

19.
Nat Commun ; 14(1): 181, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635288

RESUMO

PIK3CA encoding the phosphoinositide 3-kinase (PI3K) p110α catalytic subunit is frequently mutated in cancer, with mutations occurring widely throughout the primary sequence. The full set of mechanisms underlying how PI3Ks are activated by all oncogenic mutations on membranes are unclear. Using a synergy of biochemical assays and hydrogen deuterium exchange mass spectrometry (HDX-MS), we reveal unique regulatory mechanisms underlying PI3K activation. Engagement of p110α on membranes leads to disengagement of the ABD of p110α from the catalytic core, and the C2 domain from the iSH2 domain of the p85 regulatory subunit. PI3K activation also requires reorientation of the p110α C-terminus, with mutations that alter the inhibited conformation of the C-terminus increasing membrane binding. Mutations at the C-terminus (M1043I/L, H1047R, G1049R, and N1068KLKR) activate p110α through distinct mechanisms, with this having important implications for mutant selective inhibitor development. This work reveals unique mechanisms underlying how PI3K is activated by oncogenic mutations, and explains how double mutants can synergistically increase PI3K activity.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Neoplasias , Humanos , Domínio Catalítico/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação , Neoplasias/genética
20.
Structure ; 31(3): 343-354.e3, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36758543

RESUMO

Akt is a master regulator of pro-growth signaling in the cell. Akt is activated by phosphoinositides that disrupt the autoinhibitory interface between the kinase and pleckstrin homology (PH) domains and then is phosphorylated at T308 and S473. Akt hyperactivation is oncogenic, which has spurred development of potent and selective inhibitors as therapeutics. Using hydrogen deuterium exchange mass spectrometry (HDX-MS), we interrogated the conformational changes upon binding Akt ATP-competitive and allosteric inhibitors. We compared inhibitors against three different states of Akt1. The allosteric inhibitor caused substantive conformational changes and restricts membrane binding. ATP-competitive inhibitors caused extensive allosteric conformational changes, altering the autoinhibitory interface and leading to increased membrane binding, suggesting that the PH domain is more accessible for membrane binding. This work provides unique insight into the autoinhibitory conformation of the PH and kinase domain and conformational changes induced by Akt inhibitors and has important implications for the design of Akt targeted therapeutics.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação Alostérica , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA