Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406880, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842479

RESUMO

We present the strategic design of donor-acceptor cyanoarene-based photocatalysts (PCs) aiming to augment beneficial PC degradation for halogen atom transfer (XAT)-induced dehalogenation reactions. Our investigation reveals a competitive nature between the catalytic cycle and the degradation pathway, with degradation becoming dominant, particularly for less activated alkyl halides. The degradation behavior of PCs significantly impacts the efficiency of the XAT process, leading to exploration into manipulating the degradation behavior in a desirable direction. Recognizing the variation in the nature and rate of PC degradation, as well as its influence on the reaction across the range of PC structures, we carefully engineered the PCs to develop a pre-catalyst, named 3DP-DCDP-IPN. This pre-catalyst undergoes rapid degradation into an active form, 3DP-DCDP-Me-BN, exhibited an enhanced reducing ability in its radical anion form to induce better PC regeneration and consequently effectively catalyzes the XAT reaction, even with a challenging substrate.

2.
J Phys Chem A ; 127(51): 10775-10788, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38096377

RESUMO

Thermally activated delayed fluorescence (TADF) emitters are molecules of interest as homogeneous organic photocatalysts (OPCs) for photoredox chemistry. Here, three classes of OPC candidates are studied in dichloromethane (DCM) or N,N-dimethylformamide (DMF) solutions, using transient absorption spectroscopy and time-resolved fluorescence spectroscopy. These OPCs are benzophenones with either carbazole (2Cz-BP and 2tCz-BP) or phenoxazine/phenothiazine (2PXZ-BP and 2PTZ-BP) appended groups and the dicyanobenzene derivative 4DP-IPN. Dual lifetimes of the S1 state populations are observed, consistent with reverse intersystem crossing (RISC) and TADF emission. Example fluorescence lifetimes in DCM are (5.18 ± 0.01) ns and (6.22 ± 1.27) µs for 2Cz-BP, (1.38 ± 0.01) ns and (0.32 ± 0.01) µs for 2PXZ-BP, and (2.97 ± 0.01) ns and (62.0 ± 5.8) µs for 4DP-IPN. From ground state bleach recoveries and time-correlated single photon counting measurements, triplet quantum yields in DCM are estimated to be 0.62 ± 0.16, 0.04 ± 0.01, and 0.83 ± 0.02 for 2Cz-BP, 2PXZ-BP, and 4DP-IPN, respectively. 4DP-IPN displays similar photophysical behavior to the previously studied OPC 4Cz-IPN. Independent of the choice of solvent, 4DP-IPN, 2Cz-BP, and 2tCz-BP are shown to be TADF emitters, whereas emission by 2PXZ-BP and 2PTZ-BP depends on the molecular environment, with TADF emission enhanced in aggregates compared to monomers. Behavior of this type is representative of aggregation-induced emission luminogens (AIEgens).

3.
Nanotechnology ; 32(4): 045201, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33032272

RESUMO

Notwithstanding its excellent properties such as high work function and low resistance, Ru has not been widely applied in the preparation of electrodes for various electronic devices. This is because of the occurrence of severe morphological degradation in the actual devices employing Ru. Herein, we investigated Ru chemistry for electrode application and the degradation mechanism of Ru during subsequent processes such as thin film deposition or thermal annealing. We revealed that subsurface oxygen induces Ru degradation owing to the alteration of Ru chemistry by the pretreatment under various gas ambient conditions and due to the growth behavior of TiO2 deposited via atomic layer deposition (ALD). The degradation of Ru is successfully ameliorated by conducting an appropriate pretreatment prior to ALD. The TiO2 thin film deposited on the pretreated Ru electrode exhibited a rutile-phased crystal structure and smooth surface morphology, thereby resulting in excellent electrical properties. This paper presents an important development in the application of Ru as the electrode that can facilitate the development of various next-generation electronic devices.

4.
Phys Chem Chem Phys ; 23(4): 2568-2574, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33078177

RESUMO

Atomic layer deposition (ALD) has scarcely been utilized in large-scale manufacturing and industrial processes due to its low productivity, even though it possesses several advantages for improving the device performance. The major cause of its low productivity is the slow growth rate, which is determined by the amount of chemisorbed precursor. The slow growth rate of ALD has become even more critical due to the introduction of heteroleptic-based precursors for achieving a higher thermal stability. In this study, we investigated the theoretical and experimental chemisorption characteristics of the Ti(CpMe5)(OMe)3 precursor during the ALD of TiO2. By density functional theory calculations, the relationship between the steric hindrance effect and the chemistry of a chemisorbed precursor was revealed. Based on the calculation result, a way for improving the growth per cycle by 50% was proposed and demonstrated, successfully.

5.
J Phys Ther Sci ; 27(5): 1401-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26157229

RESUMO

[Purpose] This study investigated factors that affect the health of police officers by analyzing job stress, psychosocial stress, and fatigue faced by police officers in order to provide basic data for the efficient management of police officers and future comparative research. [Subjects and Methods] Police officers admitted to the National Police Hospital from March to May 2013 were surveyed to investigate their degree of stress. The questionnaire consisted of 4 areas related to patient characteristics: general and demographic characteristics factors, job stress, psychosocial stress, and fatigue. [Results] The analysis of the relationships among job stress, psychosocial health, and fatigue showed the 0%, 44.7%, and 82% of those with healthy, potential, and high risks of stress had high job stress, respectively. Meanwhile, 40.8% and 77.9% of subjects with normal and high risks of fatigue had high job stress. [Conclusion] The studies can be used as basic and comparative data for the prevention and early control of job-related diseases for police officers.

6.
J Phys Ther Sci ; 26(6): 925-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25013298

RESUMO

] This study was conducted to investigate efficient, systematic management of the Korean police and to examine the status and prevention of musculoskeletal disorders in Korean police officers. [Subjects and Methods] A survey of police officers (353 subjects) who visited the National Police Hospital from March 2013 to May 2013 was conducted using a structured questionnaire. [Results] The incidence of pain was 44.2% in the shoulder, 41.4% in the waist, 31.2% in the neck, 26.1% in the legs/foot, 16.7% in the hand/wrist/finger, and 14.7% in the arm/elbow. The comparative risk of the relevant part factors was analyzed by multiple regression analysis. The shoulder had a 4.87 times higher risk in police lieutenants compared with those under the rank of corporal and a 1.78 times higher risk in people with chronic diseases than those without chronic diseases. The arm/elbow had a 2.37 times higher risk in people who exercised than those who did not exercise and a 1.78 times higher risk in people with a chronic disease than those without chronic diseases. Generally, people with a chronic disease showed a higher risk than those without chronic diseases. [Conclusion] The results of this study could be useful as basic data for improvement of police welfare, specialized treatment for the health safety of the police, and efficient management of police resources.

7.
Nat Commun ; 15(1): 5160, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886349

RESUMO

Atom transfer radical polymerization (ATRP) with dual photoredox/copper catalysis combines the advantages of photo-ATRP and photoredox-mediated ATRP, utilizing visible light and ensuring broad monomer scope and solvent compatibility while minimizing side reactions. Despite its popularity, challenges include high photocatalyst (PC) loadings (10 to 1000 ppm), requiring additional purification and increasing costs. In this study, we discover a PC that functions at the sub-ppm level for ATRP through mechanism-driven PC design. Through studying polymerization mechanisms, we find that the efficient polymerizations are driven by PCs whose ground state oxidation potential-responsible for PC regeneration-play a more important role than their excited state reducing power, responsible for initiation. This is verified by screening PCs with varying redox potentials and triplet excited state generation capabilities. Based on these findings, we identify a highly efficient PC, 4DCDP-IPN, featuring moderate excited state reducing power and a maximized ground state oxidation potential. Employing this PC at 50 ppb, we synthesize poly(methyl methacrylate) with high conversion, narrow molecular weight distribution, and high chain-end fidelity. This system exhibits oxygen tolerance and supports large-scale reactions under ambient conditions. Our findings, driven by the systematic PC design, offer meaningful insights for controlled radical polymerizations and metallaphotoredox-mediated syntheses beyond ATRP.

8.
Adv Mater ; 36(14): e2309891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146993

RESUMO

With growing sustainability concerns, the need for products that facilitate easy disassembly and reuse has increased. Adhesives, initially designed for bonding, now face demands for selective removal, enabling rapid assembly-disassembly and efficient maintenance across industries. This need is particularly evident in the display industry, with the rise of foldable devices necessitating specialized adhesives. A novel optically clear adhesive (OCA) is presented for foldable display, featuring a unique UV-stimulated selective removal feature. This approach incorporates benzophenone derivatives into the polymer network, facilitating rapid debonding under UV irradiation. A key feature of this method is the adept use of visible-light-driven radical polymerization for OCA film fabrication. This method shows remarkable compatibility with various monomers and exhibits orthogonal reactivity to benzophenone, rendering it ideal for large-scale production. The resultant OCA not only has high transparency and balanced elasticity, along with excellent resistance to repeated folding, but it also exhibits significantly reduced adhesion when exposed to UV irradiation. By merging this customized formulation with strategically integrated UV-responsive elements, an effective solution is offered that enhances manufacturing efficiency and product reliability in the rapidly evolving field of sustainable electronics and displays. This research additionally contributes to eco-friendly device fabrication, aligning with emerging technology demands.

9.
ACS Nano ; 18(20): 13277-13285, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728175

RESUMO

Synapses in the brain utilize two distinct communication mechanisms: chemical and electrical. For a comprehensive investigation of neural circuitry, neural interfaces should be capable of both monitoring and stimulating these types of physiological interactions. However, previously developed interfaces for neurotransmitter monitoring have been limited in interaction modality due to constraints in device size, fabrication techniques, and the usage of flexible materials. To address this obstacle, we propose a multifunctional and flexible fiber probe fabricated through the microwire codrawing thermal drawing process, which enables the high-density integration of functional components with various materials such as polymers, metals, and carbon fibers. The fiber enables real-time monitoring of transient dopamine release in vivo, real-time stimulation of cell-specific neuronal populations via optogenetic stimulation, single-unit electrophysiology of individual neurons localized to the tip of the neural probe, and chemical stimulation via drug delivery. This fiber will improve the accessibility and functionality of bidirectional interrogation of neurochemical mechanisms in implantable neural probes.


Assuntos
Encéfalo , Neurônios , Sinapses , Animais , Encéfalo/metabolismo , Sinapses/metabolismo , Sinapses/química , Neurônios/metabolismo , Optogenética , Dopamina/metabolismo , Camundongos , Temperatura
10.
Nat Commun ; 15(1): 2829, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565557

RESUMO

In developing an organic light-emitting diode (OLED) panel for a foldable smartphone (specifically, a color filter on encapsulation) aimed at reducing power consumption, the use of a new optically clear adhesive (OCA) that blocks UV light was crucial. However, the incorporation of a UV-blocking agent within the OCA presented a challenge, as it restricted the traditional UV-curing methods commonly used in the manufacturing process. Although a visible-light curing technique for producing UV-blocking OCA was proposed, its slow curing speed posed a barrier to commercialization. Our study introduces a highly efficient photo-initiating system (PIS) for the rapid production of UV-blocking OCAs utilizing visible light. We have carefully selected the photocatalyst (PC) to minimize electron and energy transfer to UV-blocking agents and have chosen co-initiators that allow for faster electron transfer and more rapid PC regeneration compared to previously established amine-based co-initiators. This advancement enabled a tenfold increase in the production speed of UV-blocking OCAs, while maintaining their essential protective, transparent, and flexible properties. When applied to OLED devices, this OCA demonstrated UV protection, suggesting its potential for broader application in the safeguarding of various smart devices.

11.
Adv Mater ; 36(19): e2311917, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288894

RESUMO

Light-driven 3D printing is gaining significant attention for its unparalleled build speed and high-resolution in additive manufacturing. However, extending vat photopolymerization to multifunctional, photoresponsive materials poses challenges, such as light attenuation and interference between the photocatalysts (PCs) and photoactive moieties. This study introduces novel visible-light-driven acrylic resins that enable rapid, high-resolution photoactive 3D printing. The synergistic combination of a cyanine-based PC, borate, and iodonium coinitiators (HNu 254) achieves an excellent printing rate and feature resolution under low-intensity, red light exposure. The incorporation of novel hexaarylbiimidazole (HABI) crosslinkers allows for spatially-resolved photoactivation upon exposure to violet/blue light. Furthermore, a photobleaching mechanism inhibited by HNu 254 during the photopolymerization process results in the production of optically-clear 3D printed objects. Real-time Fourier transform infrared spectroscopy validates the rapid photopolymerization of the HABI-containing acrylic resin, whereas mechanistic evaluations reveal the underlying dynamics that are responsible for the rapid photopolymerization rate, wavelength-orthogonal photoactivation, and observed photobleaching phenomenon. Ultimately, this visible-light-based printing method demonstrates: (i) rapid printing rate of 22.5 mm h-1, (ii) excellent feature resolution (≈20 µm), and (iii) production of optically clear object with self-healing capability and spatially controlled cleavage. This study serves as a roadmap for developing next-generation "smart" 3D printing technologies.

12.
Adv Mater ; 36(27): e2313625, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552258

RESUMO

Neural probe engineering is a dynamic field, driving innovation in neuroscience and addressing scientific and medical demands. Recent advancements involve integrating nanomaterials to improve performance, aiming for sustained in vivo functionality. However, challenges persist due to size, stiffness, complexity, and manufacturing intricacies. To address these issues, a neural interface utilizing freestanding CNT-sheets drawn from CNT-forests integrated onto thermally drawn functional polymer fibers is proposed. This approach yields a device with structural alignment, resulting in exceptional electrical, mechanical, and electrochemical properties while retaining biocompatibility for prolonged periods of implantation. This Structurally Aligned Multifunctional neural Probe (SAMP) employing forest-drawn CNT sheets demonstrates in vivo capabilities in neural recording, neurotransmitter detection, and brain/spinal cord circuit manipulation via optogenetics, maintaining functionality for over a year post-implantation. The straightforward fabrication method's versatility, coupled with the device's functional reliability, underscores the significance of this technique in the next-generation carbon-based implants. Moreover, the device's longevity and multifunctionality position it as a promising platform for long-term neuroscience research.


Assuntos
Nanotubos de Carbono , Polímeros , Animais , Polímeros/química , Nanotubos de Carbono/química , Temperatura , Optogenética/métodos , Neurônios/fisiologia , Neurônios/citologia , Materiais Biocompatíveis/química , Encéfalo , Neurotransmissores , Medula Espinal , Camundongos
13.
Chemosphere ; 332: 138870, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156289

RESUMO

Odorous volatile organic compounds (VOCs) deteriorate the quality of life and affect human health. In this study, a process was developed to remove an odorous VOC using a combined non-thermal plasma (NTP) and wet scrubber (WS) system. The low removal efficiency of WSs and the large amount of ozone generated by NTP were resolved. Compared to the decomposition effects when using a WS and NTP separately, the NTP + WS system improved the removal efficiency of ethyl acrylate (EA) and significantly reduced ozone emissions. The maximum EA removal efficiency was 99.9%. Additionally, an EA removal efficiency of over 53.4% and a 100% ozone removal efficiency were achieved even at discharge voltages lower than 4.5 kV. Ozone catalysis was confirmed to occur in the NTP + WS system. Furthermore, we verified the removal of by-products such as residual ozone and formaldehyde, which is a representative organic intermediate of EA. This study demonstrates that the NTP + WS system is a green technology for removing odorous VOCs.


Assuntos
Poluentes Atmosféricos , Ozônio , Gases em Plasma , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Qualidade de Vida , Odorantes/prevenção & controle , Poluentes Atmosféricos/análise
14.
Drug Deliv Transl Res ; 13(5): 1212-1227, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35794353

RESUMO

Ticagrelor (TCG), an antiplatelet agent, has low solubility and permeability; thus, there are many trials to apply the pharmaceutical technology for the enhancement of TCG solubility and permeability. Herein, we have developed the TCG high-loaded nanostructured lipid carrier (HL-NLC) and solidified the HL-NLC to develop the oral tablet. The HL-NLC was successfully fabricated and optimized with a particle size of 164.5 nm, a PDI of 0.199, an encapsulation efficiency of 98.5%, and a drug loading of 16.4%. For the solidification of HL-NLC (S-HL-NLC), the adsorbent was determined based on the physical properties of the S-HL-NLC, such as bulk density, tap density, angle of repose, Hausner ratio, Carr's index, and drug content. Florite R was chosen because of its excellent adsorption capacity, excellent physical properties, and solubility of the powder after manufacturing. Using an S-HL-NLC, the S-HL-NLC tablet with HPMC 4 K was prepared, which is showed a released extent of more than 90% at 24 h. Thus, we have developed the sustained release tablet containing the TCG-loaded HL-NLC. Moreover, the formulations have exhibited no cytotoxicity against Caco-2 cells and improved the cellular uptake of TCG. In pharmacokinetic study, compared with raw TCG, the bioavailability of HL-NLC and S-HL-NLC was increased by 293% and 323%, respectively. In conclusion, we successfully developed the TCG high-loaded NLC tablet, that exhibited a sustained release profile and enhanced oral bioavailability.


Assuntos
Sistemas de Liberação de Medicamentos , Nanoestruturas , Humanos , Portadores de Fármacos/farmacocinética , Ticagrelor , Preparações de Ação Retardada , Células CACO-2 , Comprimidos , Lipídeos , Tamanho da Partícula
15.
Int J Nanomedicine ; 18: 1561-1575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007987

RESUMO

Introduction: The ongoing SARS-CoV-2 pandemic has affected public health, the economy, and society. This study reported a nanotechnology-based strategy to enhance the antiviral efficacy of the antiviral agent remdesivir (RDS). Results: We developed a nanosized spherical RDS-NLC in which the RDS was encapsulated in an amorphous form. The RDS-NLC significantly potentiated the antiviral efficacy of RDS against SARS-CoV-2 and its variants (alpha, beta, and delta). Our study revealed that NLC technology improved the antiviral effect of RDS against SARS-CoV-2 by enhancing the cellular uptake of RDS and reducing SARS-CoV-2 entry in cells. These improvements resulted in a 211% increase in the bioavailability of RDS. Conclusion: Thus, the application of NLC against SARS-CoV-2 may be a beneficial strategy to improve the antiviral effects of antiviral agents.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Lipídeos
16.
Nat Commun ; 14(1): 4173, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443162

RESUMO

Deformable semi-solid liquid metal particles (LMP) have emerged as a promising substitute for rigid conductive fillers due to their excellent electrical properties and stable conductance under strain. However, achieving a compact and robust coating of LMP on fibers remains a persistent challenge, mainly due to the incompatibility of conventional coating techniques with LMP. Additionally, the limited durability and absence of initial electrical conductivity of LMP restrict their widespread application. In this study, we propose a solution process that robustly and compactly assembles mechanically durable and initially conductive LMP on fibers. Specifically, we present a shearing-based deposition of polymer-attached LMP followed by additional coating with CNT-attached LMP to create bi-layer LMP composite with exceptional durability, electrical conductivity, stretchability, and biocompatibility on various fibers. The versatility and reliability of this manufacturing strategy for 1D electronics are demonstrated through the development of sewn electrical circuits, smart clothes, stretchable biointerfaced fiber, and multifunctional fiber probes.


Assuntos
Dispositivos Eletrônicos Vestíveis , Têxteis , Reprodutibilidade dos Testes , Polímeros , Metais
17.
Avian Dis ; 56(1): 218-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22545549

RESUMO

A Newcastle disease surveillance program was conducted at live bird markets in Korea to expand our epidemiologic understanding of the disease in Korea. During the surveillance program, 10 lentogenic Newcastle disease viruses (NDVs) were isolated and identified from apparently healthy chickens and ducks at live bird markets. The lentogenic viruses had sequence motifs of either 112GKQGRL117 (n = 8) or 112GRQGRL117 (n = 2) at the F0 cleavage site. Sequencing and phylogenetic analyses of NDV isolates based on the hypervariable region of the F protein revealed two different genotypes: genotypes I (n = 8) and II (n = 2). Genotype I viruses were most closely related to the NDV V4 strain (n = 7) or the NDV Ulster 2C strain (n = 1). In contrast, genotype II viruses clustered with the NDV vaccine strains (LaSota and VG/GA) that are commonly used as live vaccines in Korea. The epidemiologic importance of NDV at live bird markets in Korea is discussed.


Assuntos
Galinhas , Patos , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/genética , RNA Viral/genética , Animais , Dados de Sequência Molecular , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Filogenia , República da Coreia/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Phys Chem B ; 126(7): 1615-1624, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35138105

RESUMO

A promising conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) experiences significant conductivity enhancement when treated with proper ionic liquids (ILs). Based on the hard-soft-acid-base principle, we propose a combination of a hydrophilic hard cation A+ (instead of the commonly used 1-ethyl-3-methyl imidazolium, EMIM+) and a hydrophobic soft anion X- (such as tetracyanoborate, TCB-) as the best ILs for this purpose. Such ILs would decouple hydrophilic-but-insulating PSS- from conducting-but-hydrophobic PEDOT+ most efficiently by strong interactions with hydrophilic A+ and hydrophobic X-, respectively. Such a favorable ion exchange between PEDOT+:PSS- and A+:X- ILs would allow the growth of conducting PEDOT+ domains decorated by X-, not disturbed by PSS- or A+. Using density functional theory calculations and molecular dynamics simulations, we demonstrate that a protic cation- (aliphatic N-alkyl pyrrolidinium, in particular) combined with the hydrophobic anion TCB- indeed outperforms EMIM+ by promptly leaving hydrophobic TCB- and strongly binding to hydrophilic PSS-.


Assuntos
Líquidos Iônicos , Ânions , Compostos Bicíclicos Heterocíclicos com Pontes , Cátions , Líquidos Iônicos/química , Polímeros/química
19.
Sci Rep ; 12(1): 15756, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131082

RESUMO

The design-rule shrinkage in semiconductor devices is a challenge at every step of the integration process. In the gap-fill process for isolation, the seam and void formation cannot be suppressed by using a deposition process, which even has excellent step coverage. To achieve seamless gap fill in the high-aspect-ratio structure, which has a non-ideal etch profile such as a negative slope, the deposition process should be able to realize the "bottom-up growth" behavior. In this work, the bottom-up growth of a SiO2 plasma-enhanced atomic layer deposition (PE-ALD) process in a trench structure was investigated by using a growth inhibition process employing plasma treatment. N2 and NH3 plasma pre-treatments were employed to suppress the growth of the SiO2 PE-ALD process without any contamination, and the inhibition mechanism was investigated by performing surface chemistry analyses using X-ray photoelectron spectroscopy. Furthermore, the gap-fill characteristics of the SiO2 PE-ALD process were examined, depending on the process conditions of NH3 plasma pre-treatment, by performing cross-sectional field emission scanning electron microscopy measurements. Finally, a seamless gap-fill process in a high-aspect-ratio trench pattern was achieved by the bottom-up growth behavior of SiO2 PE-ALD using NH3 plasma pre-treatment.

20.
J Control Release ; 349: 241-253, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798094

RESUMO

Although mesoporous silica nanoparticles (MSNs) are widely used as anticancer drug carriers, unmodified MSNs induce off-target effects and at high doses, there are adverse effects of hemolysis because of the interaction with the silanol group on the surface and cells. In this study, we developed doxorubicin (DOX)-loaded MSNs coated with mannose grafted poly (acrylic acid) copolymer (DOX@MSNs-man-g-PAA) to enhance the hemocompatibility and target efficacy to cancer cells. This uniform nanosized DOX@MSNs-man-g-PAA showed sustained and pH-dependent drug release with improved hemocompatibility over the bare MSNs. The uptake of the DOX@MSN-man-g-PAA in breast cancer cells was significantly improved by mannose receptor-mediated endocytosis, which showed significant increasing intracellular ROS and changes in mitochondrial membrane potential. This formulation exhibited superior tumor-suppressing activity in the MDA-MB-231 cells inoculated mice. Overall, the present study suggested the possibility of the copolymer-coated MSNs as drug carriers for cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Resinas Acrílicas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Manose , Camundongos , Polímeros , Porosidade , Espécies Reativas de Oxigênio , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA