Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 23(6): 834-843, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532072

RESUMO

Liquid crystal elastomers hold promise in various fields due to their reversible transition of mechanical and optical properties across distinct phases. However, the lack of local phase patterning techniques and irreversible phase programming has hindered their broad implementation. Here we introduce laser-induced dynamic crosslinking, which leverages the precision and control offered by laser technology to achieve high-resolution multilevel patterning and transmittance modulation. Incorporation of allyl sulfide groups enables adaptive liquid crystal elastomers that can be reconfigured into desired phases or complex patterns. Laser-induced dynamic crosslinking is compatible with existing processing methods and allows the generation of thermo- and strain-responsive patterns that include isotropic, polydomain and monodomain phases within a single liquid crystal elastomer film. We show temporary information encryption at body temperature, expanding the functionality of liquid crystal elastomer devices in wearable applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39138136

RESUMO

In this study, we propose large-scale CsPbBr3 (CPB) single-crystalline films (SCFs) grown by a one-step vapor-phase epitaxy (VPE) method for application in optoelectronic devices. After optimizing the transport speed of the precursor and cooling rate, we obtained continuous CPB films with a lateral size exceeding 2 cm2, and the thickness could be controlled from several micrometers to hundreds of nanometers. Crystallography and optoelectronic characterization proved the excellent crystallinity and very low trap density (2.14 × 1011) of the SCFs. Furthermore, we demonstrate a transfer-assembly strategy for fabricating perovskite SCF-based heterostructures for visible photodetectors. The high-quality SCF films in the active layer suppress the leakage current, leading to a low dark current of 5 × 10-10 A at -0.6 V. Therefore, the self-biased photodetector based on the vertical CsPbBr3 SCF-SnO2 heterostructure showed a high responsivity of 1.9 A/W, a detectivity of 4.65 × 1012 Jones, and a large on/off ratio of 4.63 × 103 under a 1 mW/cm2 450 nm light illumination. Our study not only demonstrates the excellent performance of single-crystalline perovskite-based photodiodes but also provides a universal assembly method for the integration of monocrystalline perovskite films in optoelectronic devices.

3.
ACS Nano ; 18(3): 2312-2324, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190550

RESUMO

Stable outdoor wearable electronics are gaining attention due to challenges in sustaining consistent device performance outdoors, where sunlight exposure and user movement can disrupt operations. Currently, researchers have focused on integrating radiative coolers into wearable devices for outdoor thermal management. However, these approaches often rely on heat-vulnerable thermoplastic polymers for radiative coolers and strain-susceptible conductors that are unsuitable for wearable electronics. Here, we introduce mechanically, electrically, and thermally stable wearable electronics even when they are stretched under sunlight to address these challenges. This achievement is realized by integrating a polydimethylsiloxane nanofibrous cooler and liquid metal conductors for a fully stable wearable device. The thermally robust architecture of nanofibers, based on their inherent properties as thermoset polymers, exhibits excellent cooling performance through high solar reflection and thermal emission. Additionally, laser-patterned conductors possess ideal properties for wearable electronics, including strain-insensitivity, nonsmearing behavior, and negligible contact resistance. As proof, we developed wearable electronics integrated with thermally and electromechanically stable components that accurately detect physiological signals in harsh environments, including light exposure, while stretched up to 30%. This work highlights the potential for the development of everyday wearable electronics capable of reliable operation under challenging external conditions, including user-activity-induced stress and sunlight exposure.

4.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251142

RESUMO

Double buffer layers composed of (AlxGa1-x)2O3/Ga2O3 structures were employed to grow a Sn-doped α-Ga2O3 epitaxial thin film on a sapphire substrate using mist chemical vapor deposition. The insertion of double buffer layers improved the crystal quality of the upper-grown Sn-doped α-Ga2O3 thin films by blocking dislocation generated by the substrates. Rapid thermal annealing was conducted for the double buffer layers at phase transition temperatures of 700-800 °C. The slight mixing of κ and ß phases further improved the crystallinity of the grown Sn-Ga2O3 thin film through local lateral overgrowth. The electron mobility of the Sn-Ga2O3 thin films was also significantly improved due to the smoothened interface and the diffusion of Al. Therefore, rapid thermal annealing with the double buffer layer proved advantageous in achieving strong electrical properties for Ga2O3 semiconductor devices within a shorter processing time.

5.
Adv Mater ; : e2405568, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140643

RESUMO

The circulatory and respiratory systems in humans are marvels of biological engineering that exhibit competence in maintaining homeostasis. These systems not only shield the organism from external contaminants but also orchestrate the vital gases via the bloodstream to sustain cellular respiration and metabolic processes across diverse tissues. It is noticed that spaces inhabited encounter challenges akin to those of the human body: protecting the indoor air from external pollutants while removing anthropogenic byproducts like carbon dioxide (CO2), particulate matters (PM), and volatile organic compounds (VOCs) tooutside. A biomimetic approach, composed of a microbubble-based gas exchanger and circulating liquid inspired by alveoli, capillary beds, and bloodstream of the human circulatory/respiratory system, offer an innovative solution for comprehensive air purification of hermetic spaces. Circulatory/respiratory-inspired air purification system (CAPS) ensure both continuous removal of PM and exchange of gas species between indoor and outdoor environments to maintain homeostasis. The effectiveness of this system is also supported by animal behavior experiments with and without CAPS, showing an effect of reducing CO2 concentration by 30% and increasing mice locomotor activity by 53%. CAPS is expected to evolve into robust and comprehensive air purification schemes through the networked integration of plural internal and external environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA