Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Small ; 19(50): e2304634, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626464

RESUMO

Suppressing the photoelectric response of organic semiconductors (OSs) is of great significance for improving the operational stability of organic field-effect transistors (OFETs) in light environments, but it is quite challenging because of the great difficulty in precisely modulating exciton dynamics. In this work, photostable OFETs are demonstrated by designing the micro-structure of OSs and introducing an electrical double layer at the OS/polyelectrolyte dielectric interface, in which multiple exciton dynamic processes can be modulated. The generation and dissociation of excitons are depressed due to the small light-absorption area of the microstripe structure and the excellent crystallinity of OSs. At the same time, a highly efficient exciton quenching process is activated by the electrical double layer at the OS/polyelectrolyte dielectric interface. As a result, the OFETs show outstanding tolerance to the light irradiation of up to 306 mW·cm-2 , which far surpasses the solar irradiance value in the atmosphere (≈138 mW·cm-2 ) and achieves the highest photostability ever reported in the literature. The findings promise a general and practicable strategy for the realization of photostable OFETs and organic circuits.

2.
Angew Chem Int Ed Engl ; 61(25): e202200791, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35298062

RESUMO

Integrating high charge-carrier mobility and low-threshold lasing action in an organic semiconductor is crucial for the realization of an electrically pumped laser, but remains a great challenge. Herein, we present an organic semiconductor, named as 2,7-di(2-naphthyl)-9H-fluorene (LD-2), which shows an unexpected high charge-carrier mobility of 2.7 cm2  V-1 s-1 and low-threshold lasing characteristic of 9.43 µJ cm-2 and 9.93 µJ cm-2 and high-quality factor (Q) of 2131 and 1684 at emission peaks of 420 and 443 nm, respectively. Detailed theoretical calculations and photophysical data analysis demonstrate that a large intermolecular transfer integral of 10.36-45.16 meV together with a fast radiative transition rate of 8.0×108  s-1 are responsible for the achievement of the superior integrated optoelectronic properties in the LD-2 crystal. These optoelectronic performances of LD-2 are among the highest reported low-threshold lasing organic semiconductors with efficient charge transport, suggesting its promise for research of electrically pumped organic lasers (EPOLs).

3.
Angew Chem Int Ed Engl ; 61(45): e202206825, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35989244

RESUMO

Organic semiconductors with combinative high carrier mobility and efficient solid-state emission are full of challenges but urgently pursued for developing new emerging optoelectronics. Herein, by delicately regulating the crystal packing of an anthracene-based molecular crystal via terminal tert-butylation, we developed a superior high mobility emissive molecule, 2,6-di(6-tert-butylnaphthyl)anthracene (TBU-DNA). The unique "slipped herringbone" packing motif of TBU-DNA enables its appropriate exciton-exciton coupling and electron-phonon coupling, thus resulting in remarkably high solid-state emission (photoluminescence quantum yield, ΦF ≈74.9 %) and efficacious charge transport (carrier mobility, µ=5.0 cm2 V-1 s-1 ). Furthermore, OLETs based on TBU-DNA show an external quantum efficiency (EQE) of 1.8 %, which is among the highest EQE values for single component OLETs reported till now. This work presents a crystal engineering strategy via exquisite molecular design to realize high mobility emissive organic semiconductors.

4.
Small ; 17(28): e2100724, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018680

RESUMO

Nanospheres lithography (NSL) is an economical technique, which makes use of highly monodispersed nanospheres such as deposition or etch masks for generating patterns with nanoscale features. Embedding nanostructures into organic electronic devices can endow them with unique capabilities and enhanced performance, which have greatly advanced the development of organic electronics. In this review, a brief summary of the methods for the preparation of monodispersed nanospheres is presented. Afterward, the authors highlight the recent advances of a wide variety of applications of nanospheres lithography in organic electronic devices. Finally, the challenges in this field are pointed out, and the future development of this field is discussed.


Assuntos
Nanosferas , Nanoestruturas , Eletrônica , Impressão
5.
Small ; 17(2): e2004143, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301234

RESUMO

Copper tetracyanoquinodimethane (CuTCNQ) has been investigated around 40 years as a representative bistable material. Meanwhile, micro/nanostructures of CuTCNQ is considered as the prototype of molecular electronics, which have attracted the world's attention and shown great potential applications in nanoelectronics. In this review, methods for synthesis of CuTCNQ micro/nanostructures are first summarized briefly. Then, the strategies for controlling morphologies and sizes of CuTCNQ micro/nanostructures are highlighted. Afterwards, the devices based on these micro/nanostructures are reviewed. Finally, an outlook of future research directions and challenges in this area is presented.

6.
Chemistry ; 27(49): 12526-12534, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159653

RESUMO

Polyimide memory materials with a donor-acceptor structure based on a charge-transfer mechanism exhibit great potential for next-generation information storage technology due to their outstanding high-temperature resistance and good dimensional and chemical stability. Precisely controlling memory performance by limited chemical decoration is one of core challenges in this field. Most reported work mainly focuses on designing novel and elaborate electron donors or acceptors for the expected memory behavior of polyimides; this takes a lot of time and is not always efficacious. Herein, we report a series of porphyrinated copolyimides coPI-Znx (x=5, 10, 20, 50, 80), where x represents the mole percentage of Zn ion in the central core of the porphyrin. Experimental and theoretical analysis indicate that the Zn ion could play a vital bridge role in promoting the formation and stabilization of a charge-transfer complex by enhancing the hybridization of local and charge transfer (HLCT) excitations of porphyrinated polyimides, endowing coPI-Znx with volatile random access memory performance and continuously tunable retention time. This work could provide one simple strategy to precisely regulate memory performance merely by altering the metal content in porphyrinated polyimides.

7.
J Am Chem Soc ; 142(28): 12256-12264, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551567

RESUMO

Discovering physicochemical principles for simultaneous harvesting of multiform energy from the environment will advance current sustainable energy technologies. Here we explore photochemical phase transitions-a photochemistry-thermophysics coupled regime-for coharvesting of solar and thermal energy. In particular, we show that photon energy and ambient heat can be stored together and released on demand as high-temperature heat, enabled by room-temperature photochemical crystal↔liquid transitions of engineered molecular photoswitches. Integrating the two forms of energy in single-component molecular materials is capable of providing energy capacity beyond that of traditional solar or thermal energy storage systems based solely on molecular photoisomerization or phase change, respectively. Significantly, the ambient heat that is harvested during photochemical melting into liquid of the low-melting-point, metastable isomer can be released as high-temperature heat by recrystallization of the high-melting-point, parent isomer. This reveals that photon energy drives the upgrading of thermal energy in such a hybrid energy system. Rationally designed small-molecule azo switches achieve high gravimetric energy densities of 0.3-0.4 MJ/kg with long-term storage stability. Rechargeable solar thermal battery devices are fabricated, which upon light triggering provide gravimetric power density of about 2.7 kW/kg and temperature increases of >20 °C in ambient environment. We further show their use as deicing coatings. Our work demonstrates a new concept of energy utilization-combining solar energy and low-grade heat into higher-grade heat-which unlocks the possibility of developing sustainable energy systems powered by a combination of natural sunlight and ambient heat.

8.
Small ; 16(49): e2005659, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33201592

RESUMO

Compared with typical binary polymeric memory materials, functional polymers with ternary memory performance possess significant potential to achieve ultra-high-density data storage. The reported ternary memory polymers are normally driven by dual-mechanism. However, the involved thermodynamically unstable mechanisms (field-induced conformation change or conductive filament formation/fracture) may result in the poor reliability of memory devices under high-temperature working atmosphere. Another strategy to realize ternary memory is introducing charge trapping/de-trapping mechanism by attaching charge trap atom/group at electron donor, which is proved not always effective. Moreover, the synergistic two mechanisms may have difficulty for clarifying the relationship between memory performance and chemical structures, which is the core issue of polymer memory materials. Besides, some multi-level memory materials need the cooperative participation of artificially setting compliance current, which is the extension of typical binary memory and may cause a more complicated technique and logic circuit. Herein, based on charge-transfer mechanism, a concise and effective strategy to realize ternary memory application is proposed. By inserting a Zn ion, the charge-transfer process occurring in electron donors can lead to the novel electrical tri-stability memory behaviors. This work can provide a novel idea for achieving reliable and intrinsic ternary high-density data storage applications.

9.
Angew Chem Int Ed Engl ; 57(34): 10949-10953, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29952136

RESUMO

The +6 oxidation state of iron generally exists in the form of ferrate(VI) with high redox potential and environmentally friendly nature. Although ferrate(VI) has been known for over a century, its chemistry is still limited to the solvent-based reactions that suffers from the insolubility/instability of this oxidant and the environmental issues caused by hazardous solvents. Herein, we explore the solvent-free reactivity of ferrate(VI) under mechanical milling, revealing that its strong oxidizing power is accessible in the "dry" solid state towards a broad variety of substrates, for example, aromatic alcohols/aldehydes and carbon nanotubes. More significantly, solvent-free mechanochemistry also reshapes the oxidizing ability of ferrate(VI) due to the underlying solvent-free effect and the promotive mechanical actions. This study opens up a new chemistry of ferrate(VI) with promising application in green oxidative transformation of both organic and inorganic substrates.

10.
J Am Chem Soc ; 139(7): 2734-2740, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28127956

RESUMO

Efficient charge transport in organic semiconductors is essential for construction of high performance optoelectronic devices. Herein, for the first time, we demonstrate that poly(amic acid) (PAA), a facilely deposited and annealing-free dielectric layer, can tailor the growth of organic semiconductor films with large area and high crystallinity toward efficient charge transport and high mobility in their thin film transistors. Pentacene is used as a model system to demonstrate the concept with mobility up to 30.6 cm2 V-1 s-1, comparable to its high quality single crystal devices. The structure of PAA has corrugations with OH groups pointing out of the surface, and the presence of an amide bond further allows adjacent polymer strands to interact via hydrogen bonding, leading to a self-rippled surface perpendicular to the corrugation. On the other hand, the strong polar groups (-COOH/-CONH) of PAA could provide repulsive forces between PAA and pentacene, which results in the vertical orientation of pentacene on the dielectric surface. Indeed, in comparison with its imidized counterpart polyimide (PI), PAA dielectric significantly enhances the film crystallinity, drastically increases the domain size, and decreases the interface trap density, giving rise to superior device performance with high mobility. This concept can be extended to more organic semiconducting systems, e.g., 2,6-diphenylanthracene (DPA), tetracene, copper phthalocyanine (CuPc), and copper hexadecafluorophthalocyanine (F16CuPc), demonstrating the general applicability. The results show the importance of combining surface nanogrooves with the strong polarity in orienting the molecular arrangement for high crystallinity toward efficient charge transport in organic semiconductors.

11.
Sci Adv ; 10(23): eado2329, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838139

RESUMO

High-performance organic devices with dynamic and stable modulation are essential for building devices adaptable to the environment. However, the existing reported devices incorporating light-activated units exhibit either limited device stability or subpar optoelectronic properties. Here, we synthesize a new optically tunable polymer dielectric functionalized with photochromic arylazopyrazole units with a cis-isomer half-life of as long as 90 days. On this basis, stable dual-mode organic transistors that can be reversibly modulated are successfully fabricated. The trans-state devices exhibit high carrier mobility reaching 7.4 square centimeters per volt per second and excellent optical figures of merit, whereas the cis-state devices demonstrate stable but starkly different optoelectronic performance. Furthermore, optical image sensors are prepared with regulatable nonvolatile memories from 36 hours (cis state) to 108 hours (trans state). The achievement of dynamic light modulation shows remarkable prospects for the intelligent application of organic optoelectronic devices.

12.
Nat Commun ; 15(1): 626, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245526

RESUMO

Optoelectronic properties of semiconductors are significantly modified by impurities at trace level. Oxygen, a prevalent impurity in organic semiconductors (OSCs), has long been considered charge-carrier traps, leading to mobility degradation and stability problems. However, this understanding relies on the conventional deoxygenation methods, by which oxygen residues in OSCs are inevitable. It implies that the current understanding is questionable. Here, we develop a non-destructive deoxygenation method (i.e., de-doping) for OSCs by a soft plasma treatment, and thus reveal that trace oxygen significantly pre-empties the donor-like traps in OSCs, which is the origin of p-type characteristics exhibited by the majority of these materials. This insight is completely opposite to the previously reported carrier trapping and can clarify some previously unexplained organic electronics phenomena. Furthermore, the de-doping results in the disappearance of p-type behaviors and significant increase of n-type properties, while re-doping (under light irradiation in O2) can controllably reverse the process. Benefiting from this, the key electronic characteristics (e.g., polarity, conductivity, threshold voltage, and mobility) can be precisely modulated in a nondestructive way, expanding the explorable property space for all known OSC materials.

13.
RSC Adv ; 13(17): 11706-11711, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063740

RESUMO

Organic phototransistors (OPTs), as the basic unit for organic image sensors, are emerging as one of the most promising light signal detectors. High performance UV-sensitive phototransistors are highly desired for the detection of UV light. Herein, by introducing the anthracene group to the 2,6-positions of dithieno[3,2-b:2',3'-d]thiophene, we designed and synthesized a new dithieno[3,2-b:2',3'-d]thiophene derivative, 2,6-di(anthracen-2-yl)dithieno[3,2-b:2',3'-d]thiophene (2,6-DADTT). The single crystal structure of 2,6-DADTT presents classical herringbone packing with multiple intermolecular interactions, including S⋯S (3.470 Å), S⋯C (3.304 Å, 3.391 Å, 3.394 Å) and C-H⋯π (2.763 Å, 2.822 Å, 2.846 Å, 2.865 Å, 2.885 Å, 2.890 Å) contacts. Single crystal organic field-effect transistors (SC-OFETs) based on 2,6-DADTT reach a highest mobility of 1.26 cm2 V-1 s-1 and an average mobility of 0.706 cm2 V-1 s-1. 2,6-DADTT-based single crystal organic phototransistors (OPTs) demonstrate photosensitivity (P) of 2.49 × 106, photoresponsivity (R) of 6.84 × 103 A W-1 and ultrahigh detectivity (D*) of 4.70 × 1016 Jones to UV light, which are among the best figures of merit for UV-sensitive OPTs. These excellent comprehensive performances indicate its good application prospects in integrated optoelectronics.

14.
ACS Appl Mater Interfaces ; 15(13): 16930-16941, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972413

RESUMO

Several thiophene terminated thienoacenes with high mobilities in organic thin-film transistors (OTFTs) have been reported; however, the structure-property relationship of thiophene terminated thienoacenes was unclear, especially the impact of α or ß position substitution of terminal thiophene ring on molecular packing and physicochemical properties. Here, we report the synthesis and characterization of a six-ring-fused naphtho[2,3-b:6,7-b'] bithieno[2,3-d] thiophene (NBTT) and its derivatives 2,8-dioctyl-naphtho[2,3-b:6,7-b'] bithieno [2,3-d] thiophene (2,8-C8NBTT) and 3,9-dioctyl-naphtho[2,3-b:6,7-b'] bithieno [2,3-d] thiophene (3,9-C8NBTT). It is found that the alkylation on terminal thiophene ring can effectively tune the molecular stacking from a cofacial herringbone stacking mode (NBTT) to layer-by-layer packing (2,8-C8NBTT and 3,9-C8NBTT). Impressively, a hopping to "band-like" charge transport mechanism evolution of vacuum deposited films is realized by modulating the alkylation position on the terminal thiophene rings. As a result, the OTFTs based on 2,8-C8NBTT characterized by a "band-like" transport presents the highest mobility of 3.58 cm2 V-1 s-1 together with a remarkably high current on/off ratio around 109. Furthermore, organic phototransistors (OPTs) based on 2,8-C8NBTT thin film also exhibits higher photosensitivity (P) of 2.0 × 108, photoresponsivity (R) of 3.3 × 103 A W-1, and detectivity (D*) of 1.3 × 1016 Jones than those based on NBTT and 3,9-C8NBTT.

15.
Light Sci Appl ; 12(1): 264, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932276

RESUMO

The neuromorphic vision sensor (NeuVS), which is based on organic field-effect transistors (OFETs), uses polar functional groups (PFGs) in polymer dielectrics as interfacial units to control charge carriers. However, the mechanism of modulating charge transport on basis of PFGs in devices is unclear. Here, the carboxyl group is introduced into polymer dielectrics in this study, and it can induce the charge transfer process at the semiconductor/dielectric interfaces for effective carrier transport, giving rise to the best device mobility up to 20 cm2 V-1 s-1 at a low operating voltage of -1 V. Furthermore, the polarity modulation effect could further increase the optical figures of merit in NeuVS devices by at least an order of magnitude more than the devices using carboxyl group-free polymer dielectrics. Additionally, devices containing carboxyl groups improved image sensing for light information decoding with 52 grayscale signals and memory capabilities at an incredibly low power consumption of 1.25 fJ/spike. Our findings provide insight into the production of high-performance polymer dielectrics for NeuVS devices.

16.
Adv Sci (Weinh) ; 10(4): e2205694, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461698

RESUMO

Phase-change semiconductor is one of the best candidates for designing nonvolatile memory, but it has never been realized in organic semiconductors until now. Here, a phase-changeable and high-mobility organic semiconductor (3,6-DATT) is first synthesized. Benefiting from the introduction of electrostatic hydrogen bond (S···H), the molecular conformation of 3,6-DATT crystals can be reversibly modulated by the electric field and ultraviolet irradiation. Through experimental and theoretical verification, the tiny difference in molecular conformation leads to crystalline polymorphisms and dramatically distinct charge transport properties, based on which a high-performance organic phase-change memory transistor (OPCMT) is constructed. The OPCMT exhibits a quick programming/erasing rate (about 3 s), long retention time (more than 2 h), and large memory window (i.e., large threshold voltage shift over 30 V). This work presents a new molecule design concept for organic semiconductors with reversible molecular conformation transition and opens a novel avenue for memory devices and other functional applications.

17.
Nat Commun ; 14(1): 2281, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085540

RESUMO

Sensing and recognizing invisible ultraviolet (UV) light is vital for exploiting advanced artificial visual perception system. However, due to the uncertainty of the natural environment, the UV signal is very hard to be detected and perceived. Here, inspired by the tetrachromatic visual system, we report a controllable UV-ultrasensitive neuromorphic vision sensor (NeuVS) that uses organic phototransistors (OPTs) as the working unit to integrate sensing, memory and processing functions. Benefiting from asymmetric molecular structure and unique UV absorption of the active layer, the as fabricated UV-ultrasensitive NeuVS can detect 370 nm UV-light with the illumination intensity as low as 31 nW cm-2, exhibiting one of the best optical figures of merit in UV-sensitive neuromorphic vision sensors. Furthermore, the NeuVS array exbibits good image sensing and memorization capability due to its ultrasensitive optical detection and large density of charge trapping states. In addition, the wavelength-selective response and multi-level optical memory properties are utilized to construct an artificial neural network for extract and identify the invisible UV information. The NeuVS array can perform static and dynamic image recognition from the original color image by filtering red, green and blue noise, and significantly improve the recognition accuracy from 46 to 90%.

18.
Adv Mater ; 34(39): e2203330, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35916258

RESUMO

Bendable organic single crystals are promising candidates for flexible electronics owing to their superior charge-transport properties. However, large-area high-quality organic single crystals are rarely available on the polymer substrates generally used in flexible electronics. Here, a surface-assisted assembly strategy based on a polymer modification, poly(amic acid) (PAA), is developed to grow large-area organic singe crystals on polymer substrates using a simple drop-casting method. The unique surface properties of PAA that enable molecular solution superwetting and promote molecular ordered assembly produce an extraordinary self-driven "meniscus-guided coating" behavior, enabling the fabrication of millimeter-sized, highly aligned organic single crystals for a variety of organic semiconductors. Organic field-effect transistors based on a mode molecule of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene demonstrate the highest (average) mobility of 18.6 cm2 V-1 s-1 (15.9 cm2 V-1 s-1 ), attractively low operating voltage of -3 V, and high flexible durability. The results shed light on the large-area fabrication of organic single crystals on polymer dielectrics toward high-performance and integrated plastic electronics.

19.
Nat Commun ; 13(1): 1480, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296674

RESUMO

The instability of organic field-effect transistors (OFETs) is one key obstacle to practical application and is closely related to the unstable aggregate state of organic semiconductors (OSCs). However, the underlying reason for this instability remains unclear, and no effective solution has been developed. Herein, we find that the intrinsic tensile and compressive strains that exist in OSC films are the key origins for aggregate state instability and device degradation. We further report a strain balance strategy to stabilize the aggregate state by regulating film thickness, which is based on the unique transition from tensile strain to compressive strain with increasing film thickness. Consequently, a strain-free and ultrastable OSC film is obtained by regulating the film thickness, with which an ultrastable OFET with a five-year lifetime is realized. This work provides a deeper understanding of and a solution to the instability of OFETs and sheds light on their industrialization.

20.
Small Methods ; 5(12): e2100676, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928035

RESUMO

Stretchable organic field-effect transistors (OFETs) are one of the essential building blocks for next-generation wearable electronics due to the high stretchability of OFET well matching with the large deformation of human skin. In recent years, some significant progress of stretchable OFETs have already been made via the strategies of stretchable molecular design and geometry engineering. However, the main opportunity and challenge of stretchable OFETs is still to simultaneously improve their stretchability and mobility. This review covers the recent advances in the research of stretchable OFETs with high mobility. First, the core stretchable materials are summarized, including organic semiconductors, electrodes, dielectrics, and substrates. Second, the materials and healing mechanism of self-healing OFET are summarized in detail. Subsequently, their different configurations and the potential applications are summarized. Finally, an outlook of future research directions and challenges in this area is presented.


Assuntos
Compostos Orgânicos/química , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Elasticidade , Eletrodos , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA