RESUMO
Adaptation to nutrient deprivation depends on the activation of metabolic programs to use reserves of energy. When outside a host plant, second-stage juveniles (J2) of the root-knot nematode (Meloidogyne spp.), an important group of pests responsible for severe losses in the production of crops (e.g., rice, wheat, and tomato), are unable to acquire food. Although lipid hydrolysis has been observed in J2 nematodes, its role in fitness and the underlying mechanisms remain unknown. Using RNA-seq analysis, here, we demonstrated that in the absence of host plants, the pathway for the biosynthesis of polyunsaturated fatty acids was upregulated, thereby increasing the production of arachidonic acid in middle-stage J2 Meloidogyne incognita worms. We also found that arachidonic acid upregulated the expression of the transcription factor hlh-30b, which in turn induced lysosomal biogenesis. Lysosomes promoted lipid hydrolysis via a lysosomal lipase, LIPL-1. Furthermore, our data demonstrated that blockage of lysosomal lipolysis reduced both lifespan and locomotion of J2 worms. Strikingly, disturbance of lysosomal lipolysis resulted in a decline in infectivity of these juveniles on tomato roots. Our findings not only reveal the molecular mechanism of lipolysis in J2 worms but also suggest potential novel strategies for the management of root-knot nematode pests.
Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Ácidos Araquidônicos/metabolismo , Metabolismo dos Lipídeos , Lipólise , Solanum lycopersicum/parasitologia , Lisossomos , Tylenchoidea/metabolismo , Tylenchoidea/fisiologiaRESUMO
Fungal communities on decaying culms of a bamboo host (Phyllostachys bambusoides) from freshwater and adjacent terrestrial habitats were identified. Collections were made at Xiao Bai Long Mountain, Yiliang, Yunnan, China in the winter and summer. In each collection, 100 similar-sized bamboo culms were collected, comprising 50 submerged samples from a stream and 50 terrestrial samples from adjacent riparian vegetation. A total of 82 fungal taxa were recorded from the samples, including 30 ascomycetes and 52 anamorphic fungi. The frequency of occurrence of these fungi were recorded and the Shannon-Weiner indices (H') were applied to evaluate fungal diversity. The results showed that variation of the fungal diversity between the summer and winter collections was insignificant (0.2 < p < 0.5). Fungal diversity on submerged bamboo however, was significantly higher than that on terrestrial bamboo (p < 0.001). Further findings were that: (1) some commonly recorded freshwater and terrestrial taxa were found in both habitats, but overall there were only 15 overlapping species between the two habitats; (2) the dominant species in each habitat were considerably different, and (3) only a few fungi were dominant, while most species were rare, being recorded only once or twice. Factors responsible for the distribution patterns and variations in composition of the fungal communities are discussed.