Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2309912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333111

RESUMO

The control incorporation of metals in silica hollow spheres (SHSs) may bring new functions to silica mesoporous structures for applications including catalysis, sensing, molecular delivery, adsorption filtration, and storage. However, the strategies for incorporating metals, whether through pre-loading in the hollow interior or post-encapsulation in the mesoporous shell, still face challenges in achieving quantitative doping of various metals and preventing metal aggregation or channel blockage during usage. In this study, we explored the doping of different metals into silica hollow spheres based on the dissolution-regrowth process of silica. The process may promote the formation of more structural defects and functional silanol groups, which could facilitate the fixation of metals in the silica networks. With this simple and efficient approach, we successfully achieved the integration of ten diverse metal species into silica hollow sphere (SHS). Various single-metal, dual-metal, triple-metal, and quadruple-metal doped SHSs have been prepared, with the doped metals being stable and homogeneously dispersed in the structure. Based on the structural characterizations, we analyzed the influence of metal types on the morphology features of SHSs. The synergistic effects of multi-metals on the catalysis applications were also studied and compared.


Significance of this work: The control incorporation of metals in silica hollow spheres (SHSs) may bring new functions to silica mesoporous structures for applications including catalysis, sensing, molecular delivery, adsorption filtration, and storage. The incorporation of metals within SHSs is always either at the interior core or in the porous shells. The former method mainly utilizes metal nanoparticles as the core and regulates the synthesis of outer porous silica shells. The latter is primarily driven by the capillary force or intermolecular interactions with surface ligands to facilitate the post-loading of metal species in porous silica structures. The main problems associated with metal-doped SHSs include 1) controlled loading of different metals with a homogeneous distribution; 2) fixation of metal species in the structures to prevent aggregation during usage, particularly at high temperatures; 3) pore channel blockage after metal loading, which may hinder the loading of other external molecules. In this work, we developed the dissolution-regrowth of silica strategy for integrating various metals in porous SHSs (M@SHSs) by a one-pot hydrothermal process without using any anchoring molecules. Unlike other sol-gel formations, the growth rate of silica in this process is greatly reduced. It thus may bring more possibilities to introduce external metals within the silica frameworks instead of in the porous channels. By regulating the addition of metal salts in the silica nanoparticles dispersions, we have successfully synthesized stable and highly homogeneous single-metal, dual-metal, triple-metal, and quadruplemetal doped SHSs. Based on the structural characterizations, we analyzed the influence of metal types on the morphology features of SHSs. The synergistic effects of multi-metals on the catalysis applications were also studied and compared. Our results offer a facile and effective strategy for preparing multi-metals as nano-catalysts. Through proper design of the doped metals in SHSs, the structures should find more applications in catalysis, drug delivery, and adsorption with unique and enhanced properties.

2.
Langmuir ; 38(48): 14550-14562, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399765

RESUMO

Herein, a highly sensitive volatile organic compound (VOC) gas sensor is demonstrated using immobilized ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate, onto surfaces functionalized by the quaternary ammonium group -N+R, -COOH, and -NH2, i.e., N+-IL, COOH-IL, and NH2-IL, respectively. These functional groups ensure highly tunable interactions between the IL and surfaces, efficiently modulating the electrical resistance of the immobilized IL upon exposure to acetone and toluene. The immobilized IL to both acetone and toluene displays significant electronic resistance changes at a concentration of 150 ppm, falling in the order NH2-IL > N+-IL > COOH-IL for acetone while COOH-IL > NH2-IL > N+-IL for toluene. A better gaseous sensing ability is achieved in COOH-IL for toluene than acetone, while this does not hold in the case of NH2-IL and N+-IL surfaces because of the completely different ion structuring of the IL at these functionalized surfaces. The accelerated ion mobility in the IL that is immobilized onto functionalized surfaces is also responsible for the strong gaseous sensing response, which is demonstrated further by the atomic force microscopy-measured smaller friction coefficient. This is highly encouraging and suggests that ILs can be immobilized by a network formed by surface functionalization to easily and cheaply detect VOCs at ppm concentrations.


Assuntos
Líquidos Iônicos , Compostos Orgânicos Voláteis , Acetona , Tolueno , Gases
3.
Small ; 17(20): e2008036, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33797192

RESUMO

Advanced fabrication of surface metal-organic complexes with specific coordination configuration and metal centers will facilitate to exploit novel nanomaterials with attractive electronic/magnetic properties. The precise on-surface synthesis provides an appealing strategy for in situ construction of complex organic ligands from simple precursors autonomously. In this paper, distinct organic ligands with stereo-specific conformation are separately synthesized through the well-known dehalogenative coupling. More interestingly, the exo-bent ligands promote the mono-iron chelated complexes with the Fe center significantly decoupled from the surface and of high spin, while the endo-bent ligands lead to bi-iron chelated ones instead with ferromagnetic properties.


Assuntos
Complexos de Coordenação , Ferro , Ligantes , Modelos Moleculares , Conformação Molecular
4.
Angew Chem Int Ed Engl ; 60(47): 25028-25033, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545674

RESUMO

Quartz crystal microbalance (QCM) is one of the powerful tools for the studies of molecular recognition and chiral discrimination. Its efficiency mainly relies on the design of the functional sensitive layer on the electrode surface. However, the organic sensitive layer may easily cause dissipation of oscillation or detachment and weaken the signal transfer during the molecular recognition processes. In this work, we reveal for the first time that the bare metal surface without the organic selector layer has the capability for chiral recognition in the QCM system. During the adsorption of various chiral amino acids, relatively higher selectivity of D-enantiomers on gold (Au) surface was shown by the QCM detection. Based on analyses of the surface crystalline structure and density functional theory calculations, we demonstrate that the chiral nature of Au surface plays an important role in the selective binding of specific D-amino acids. These results may open new insights on chiral detection by QCM system. It will also promote the construction of novel chiral sensing systems with both efficient detection and separation capability.

5.
Phys Chem Chem Phys ; 22(3): 1097-1106, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894789

RESUMO

Supported ionic liquids (ILs) are attractive alternatives for CO2 capture and the thickness of supported IL films plays a critical role in the CO2 mass transfer rate. However, the dependence of CO2 uptake on the IL film thickness differs as the system varies. In this work, atomic force microscopy (AFM) is employed to probe the 'nanofriction coefficient' to characterize the mobility of ILs at the solid interface, in which, the smaller the nanofriction coefficient, the faster are the ionic mobility and CO2 mass transfer. A monotonic and almost linear relationship for supported IL films is obtained between the resistance of CO2 mass transfer (1/k) and the nanofriction coefficient (µ), avoiding the controversy over the effect of supported IL film thickness on CO2 adsorption. The enhanced mass transfer of CO2 adsorption at IL-solid interfaces is observed at smaller resistance 1/k and friction coefficient µ. The low-friction driven local mobility (diffusion) of ILs at solid interfaces is enhanced, promoting the exchange mixing of the ILs adsorbing CO2 with the 'blank-clean' ions of the ILs, and thus accelerating the CO2 mass transfer. The proposed correlation links the nanoscale friction with the mass transfer of CO2 adsorption, providing a fresh view on the design of ultra-low frictional supported ILs for enhanced CO2 capture and separation processes.

6.
Phys Chem Chem Phys ; 20(27): 18873-18878, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29968876

RESUMO

A hierarchical heterostructure composed of silver nanoparticles (Ag-NPs: average diameter ∼10 nm) on fullerene nanorods (FNRs: average length ∼11 µm and average diameter ∼200 nm) was fabricated using a simple solution route. It was used as an effective single particle freestanding surface enhanced Raman scattering (SERS) substrate for the detection of target molecules (Rhodamine 6G: R6G). FNRs were formed ultra-rapidly (formation process completed in a few seconds) at a liquid-liquid interface of methanol and C60/mesitylene solution then Ag-NPs were grown directly on the surfaces of the FNRs by treatment with a solution of silver nitrate in ethanol. This unique hierarchical heterostructure allows efficient adsorption of target molecules also acting as an effective SERS substrate capable of detecting the adsorbed R6G molecules in the nanomolar concentration range. In this study, SERS spectra are acquired on an isolated single Ag-FNR for the detection of the absorbed molecule rather than from a bulk, large area film composed of silver/gold nanoparticles as used in conventional methods. Thus, this work provides a new approach for the design and fabrication of freestanding SERS substrates for molecular detection applications.

7.
J Am Chem Soc ; 139(10): 3669-3675, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28186738

RESUMO

Intermolecular C-C coupling after cleavage of C-X (mostly, X = Br or I) bonds has been extensively studied for facilitating the synthesis of polymeric nanostructures. However, the accidental appearance of C-H coupling at the terminal carbon atoms would limit the successive extension of covalent polymers. To our knowledge, the selective C-H coupling after dehalogenation has not so far been reported, which may illuminate another interesting field of chemical synthesis on surfaces besides in situ fabrication of polymers, i.e., synthesis of novel organic molecules. By combining STM imaging, XPS analysis, and DFT calculations, we have achieved predominant C-C coupling on Au(111) and more interestingly selective C-H coupling on Ag(111), which in turn leads to selective synthesis of polymeric chains or new organic molecules.

8.
Langmuir ; 33(42): 11590-11602, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28830141

RESUMO

We have infused graphene/ionic liquid into block copolymer homoporous membranes (HOMEs), which have highly ordered uniform cylindrical nanopores, to form compact, dense, and continuous graphene/ionic liquid (Gr/IL) lubricating layers at interfaces, enabling a reduction in the friction coefficient. Raman and XPS analyses, confirmed the parallel alignment of the cation of ILs on graphene by the π-π stacking interaction of the imidazolium ring with the graphene layer. This alignment loosens the lattice spacing of Gr in Gr/ILs, leading to a larger lattice spacing of 0.36 nm in Gr of Gr/ILs hybrids than the pristine Gr (0.33 nm). The loose graphene layers, which are caused by the coexistence of graphene and ILs, would make the sliding easier, and favor the lubrication. An increase in the friction coefficient was observed on ILs-infused block copolymer HOMEs, as compared to Gr/ILs-infused ones, due to the absence of Gr and the unstably formed ILs film. Gr/ILs-infused block copolymer HOMEs also exhibit much smaller residual indentation depth and peak indentation depth in comparison with ILs-infused ones. This indicates that the existence of stably supported Gr/ILs hybrid liquid films aids the reduction of the friction coefficient by preventing the thinning of the lubricant layer and exposure of the underlying block copolymer HOMEs.

9.
Phys Chem Chem Phys ; 19(43): 29099-29105, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29075701

RESUMO

Polycyclic aromatic compounds (naphthalene, anthracene and pyrene) have been intercalated into the superstructures of fullerene nanowhiskers, using a facile liquid-liquid interfacial precipitation (LLIP) method. Due to the interaction between polycyclic molecules and fullerene, the growth of fullerene crystals was interfered in comparison to the fullerene crystal growth without the polycyclic molecules, resulting in the formation of fullerene superstructures with various nanofeatures. Moreover, the fluorescence emissions of the fullerene superstructures were significantly changed due to the intercalation of the polycyclic molecules, implying the influence of molecular packing on the electron transfer within the nanostructures. These results may bring new insights on the control of fullerene nanostructures and to manipulate their optical properties in optoelectronic devices.

10.
Langmuir ; 32(47): 12511-12519, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27267221

RESUMO

Here, we report the structural and morphological modulation of fullerene C60 crystals induced by nonionic surfactants diglycerol monolaurate (C12G2) and monomyristate (C14G2). C60 crystals synthesized at a liquid-liquid interface comprising isopropyl alcohol (IPA) and a saturated solution of C60 in ethylbenzene (EB) exhibited a one-dimensional (1D) morphology with well-defined faceted structure. Average length and diameter of the faceted rods were ca. 4.8 µm and 747 nm, respectively. Powder X-ray diffraction pattern (pXRD) confirmed a hexagonal-close packed (hcp) structure with cell dimensions ca. a = 2.394 nm and c = 1.388 nm. The 1D rod morphology of C60 crystals was transformed into "Konpeito candy-like" crystals (average diameter ca. 1.2 µm) when the C60 crystals were grown in the presence of C12G2 or C14G2 surfactant (1%) in EB. The pXRD spectra of "Konpeito-like" crystals could be assigned to the face-centered cubic (fcc) phase with cell dimensions ca. a = 1.4309 nm (for C12G2) and a = 1.4318 nm (for C14G2). However, clusters or aggregates of C60 lacking a uniform morphology were observed at lower surfactant concentrations (0.1%), although these crystals exhibited an fcc crystal structure. The self-assembled 1D faceted C60 crystals and "Konpeito-like" C60 crystals exhibited intense photoluminescence (PL) (∼35 times greater than pC60) and a blue-shifted PL intensity maximum (∼15 nm) compared to those of pC60, demonstrating the potential use of this method for the control of the optoelectronic properties of fullerene nanostructures. The "Konpeito-like" crystals were transformed into high surface area nanoporous carbon with a graphitic microstructure upon heat-treatment at 2000 °C. The heat-treated samples showed enhanced electrochemical supercapacitance performance (specific capacitance is ca. 175 F g-1, which is about 20 times greater than pC60) with long cyclic stability demonstrating the potential of the materials in supercapacitor device fabrication.

11.
Angew Chem Int Ed Engl ; 55(29): 8228-34, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27355859

RESUMO

Metal cyanide coordination compounds are recognized as promising candidates for broad applications because of their tailorable and adjustable frameworks. Developing the nanostructure of a coordination compound may be an effective way to enhance the performance of that material in application-based roles. A controllable preferential etching method is described for synthesis of monocrystalline Prussian blue analogue (PBA) nanoframes, without the use of organic additives. The PBA nanoframes show remarkable rate performance and cycling stability for sodium/lithium ion insertion/extraction.

12.
Angew Chem Int Ed Engl ; 55(29): 8426-30, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27167720

RESUMO

Deposition of Ni-based cyanide bridged coordination polymer (NiCNNi) flakes onto the surfaces of graphene oxide (GO) sheets, which allows precise control of the resulting lamellar nanoarchitecture by in situ crystallization, is reported. GO sheets are utilized as nucleation sites that promote the optimized crystal growth of NiCNNi flakes. The NiCNNi-coated GO sheets then self-assemble and are stabilized as ordered lamellar nanomaterials. Regulated thermal treatment under nitrogen results in a Ni3 C-GO composite with a similar morphology to the starting material, and the Ni3 C-GO composite exhibits outstanding electrocatalytic activity and excellent durability for the oxygen reduction reaction.

13.
Phys Chem Chem Phys ; 17(38): 25455-62, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365825

RESUMO

Gene delivery is often accomplished by the forward or reverse transfection protocol. In either protocol, a transfection reagent (usually cationic) is added to increase the delivery efficiency. In this study, we employed a series of nanosheet networks to facilitate the delivery of naked plasmid DNA into human mesenchymal stem cells (hMSCs). By adding different chemicals into the reaction mixture for etching the silica glass, we were able to fabricate inorganic/organic hybrid nanosheet networks with different physico-chemical characteristics. We then analyzed the transfection efficiency on different nanosheets and the possible dependence of the transfection efficiency on the physico-chemical parameters of nanosheets. The results showed that all nanosheet networks were noncytotoxic and demonstrated a high cell survival rate (∼90%) after transfection. The transfection efficiency was critically determined by the aspect ratio (height/thickness of the wall) of the nanosheets. The effects of chemistry or other surface properties were not significant. Moreover, the transfection efficiency may be successfully predicted by the initial cell migration rate and the activation of integrin ß3 on the nanosheets. Compared to the conventional method, transfection using concurrent cell/plasmid seeding on the nanosheets is not only more effective but also much safer. Future efforts may focus on combining the inorganic/organic hybrid nanosheets with soft substrates for in situ transfection.


Assuntos
Nanoestruturas/química , Dióxido de Silício/química , Transfecção , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Propriedades de Superfície
14.
J Nanosci Nanotechnol ; 14(1): 390-401, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730270

RESUMO

The field of making, studying and using molecular aggregates, in which the individual molecules (monomers) are arranged in a regular fashion, has come a long way. Taking control over the aggregation of small molecules and polymers in bulk, on surfaces and at interfaces pose a considerable challenge for their utilization in modern high tech applications. In this review, we provide a detailed insight into recent trends in molecular aggregates from the perspectives of nanoarchitectonics.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Eletrônica/instrumentação , Substâncias Macromoleculares/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
15.
Chem Soc Rev ; 42(15): 6322-45, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23348617

RESUMO

Fabrication of ultrasmall functional machines and their integration within ultrasmall areas or volumes can be useful for creation of novel technologies. The ultimate goal of the development of ultrasmall machines and device systems is to construct functional structures where independent molecules operate as independent device components. To realize exotic functions, use of enzymes in device structures is an attractive solution because enzymes can be regarded as efficient machines possessing high reaction efficiencies and specificities and can operate even under ambient conditions. In this review, recent developments in enzyme immobilization for advanced functions including device applications are summarized from the viewpoint of micro/nano-level structural control, or nanoarchitectonics. Examples are roughly classified as organic soft matter, inorganic soft materials or integrated/organized media. Soft matter such as polymers and their hybrids provide a medium appropriate for entrapment and encapsulation of enzymes. In addition, self-immobilization based on self-assembly and array formation results in enzyme nanoarchitectures with soft functions. For the confinement of enzymes in nanospaces, hard inorganic mesoporous materials containing well-defined channels play an important role. Enzymes that are confined exhibit improved stability and controllable arrangement, which are useful for formation of functional relays and for their integration into artificial devices. Layer-by-layer assemblies as well as organized lipid assemblies such as Langmuir-Blodgett films are some of the best media for architecting controllable enzyme arrangements. The ultrathin forms of these films facilitate their connection with external devices such as electrodes and transistors. Artificial enzymes and enzyme-mimicking catalysts are finally briefly described as examples of enzyme functions involving non-biological materials. These systems may compensate for the drawbacks of natural enzymes, such as their instabilities under harsh conditions. We believe that enzymes and their mimics will be freely coupled, organized and integrated upon demand in near future technologies.


Assuntos
Enzimas/química , Nanoestruturas/química , Biocatálise , Enzimas/metabolismo , Modelos Moleculares , Estrutura Molecular
16.
Molecules ; 19(6): 8589-609, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24959684

RESUMO

Self-assembly has been recognised as a ubiquitous aspect of modern chemistry. Our understanding and applications of self-assembly are substantially based on what has been learned from biochemical systems. In this review, we describe various aspects of self-assembly commencing with an account of the soft structures that are available by assembly of surfactant amphiphiles, which are important scientific and industrial materials. Variation of molecular design using rules defined by surfactant self-assembly permits synthesis of functional nanostructures in solution and at surfaces while increasing the strength of intermolecular interactions through π-π stacking, metal cation coordination and/or hydrogen bonding leads to formation of highly complex bespoke nanostructured materials exemplified by DNA assemblies. We describe the origins of self-assembly involving aggregation of lipid amphiphiles and how this subject has been expanded to include other highly advanced chemical systems.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Tensoativos/química , Cristalização , DNA/química , Ligação de Hidrogênio , Micelas , Nanotecnologia
17.
Langmuir ; 29(24): 7186-94, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23394576

RESUMO

The development of new methodologies for controlling the organization of quantum materials in multiple dimensions is crucial to the advancement of device fabrication. By using a self-assembly route using selected imidazolium ionic liquids bearing long alkyl chains (C(n)Imida, n = 8, 10, 12) as ligands, we have achieved a tunable assembly of quantum-sized gold nanoparticles. The initial stabilizer of the gold nanoparticles was partially or wholly substituted depending on the concentration and alkyl chain length. π-π interactions between imidazolium rings also promote the generation of spatially controlled aggregates from the nanometer to micrometer size regimes. In particular, in the case of an imidazolium ionic liquid with decyl chains, gold particles assemble into a core-shell spherical superstructure induced by the aggregation of imidazolium ionic liquid molecules during ligand exchange. Conceptually, the assemblies of nanoparticles mimic biological systems and provide strategies for the organization of single-component nanomaterials into functional assemblies for potential applications. Our approach is general and can be applied to other types of nanomaterials for facile manipulation of the assembly processes, permitting an exploration of physicochemical properties as well as technological applications.

18.
Langmuir ; 29(24): 7291-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23273225

RESUMO

Two complementary examples of porphyrin nanoarchitectonics are presented. The fabrication of binary molecular monolayers using two different porphyrin molecules, tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin (1) and tetrakis(4-pyridyl)porphyrin (2), by deposition in ultrahigh vacuum was demonstrated. Two unusual heteromolecular monolayer structures were observed, with one exhibiting good separation of 1 molecules within the monolayer. Also, a synthetic nanoarchitectonic approach was used to prepare self-assembled molecular nanowires at a mica substrate. The nanowires could be observed to grow using atomic force microscopy (AFM), and the network structures of the nanowires could be influenced by manipulation using the AFM probe tip.

19.
Langmuir ; 29(24): 7239-48, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23320820

RESUMO

In this article, we propose a novel methodology for the formation of monodisperse regularly sized disks of several nanometer thickness and with diameters of less than 100 nm using Langmuir monolayers as fabrication media. An amphiphilic triimide, tri-n-dodecylmellitic triimide (1), was spread as a monolayer at the air-water interface with a water-soluble macrocyclic oligoamine, 1,4,7,10-tetraazacyclododecane (cyclen), in the subphase. The imide moieties of 1 act as hydrogen bond acceptors and can interact weakly with the secondary amine moieties of cyclen as hydrogen bond donors. The monolayer behavior of 1 was investigated through π-A isotherm measurements and Brewster angle microscopy (BAM). The presence of cyclen in the subphase significantly shifted isotherms and induced the formation of starfish-like microstructures. Transferred monolayers on solid supports were analyzed by reflection absorption FT-IR (FT-IR-RAS) spectroscopy and atomic force microscopy (AFM). The Langmuir monolayer transferred onto freshly cleaved mica by a surface touching (i.e., Langmuir-Schaefer) method contained disk-shaped objects with a defined height of ca. 3 nm and tunable diameter in the tens of nanometers range. Several structural parameters such as the disk height, molecular aggregation numbers in disk units, and 2D disk density per unit surface area are further discussed on the basis of AFM observations together with aggregate structure estimation and thermodynamic calculations. It should be emphasized that these well-defined structures are produced through simple routine procedures such as solution spreading, mechanical compression, and touching a substrate at the surface. The controlled formation of defined nanostructures through easy macroscopic processes should lead to unique approaches for economical, energy-efficient nanofabrication.

20.
Phys Chem Chem Phys ; 15(26): 10580-611, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23639971

RESUMO

Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA