Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 259: 115011, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196526

RESUMO

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant which mainly exposed though diet. High-fat diet (HFD) can induce atherosclerosis, as can BaP. Unhealthy dietary habits lead to high intake of both BaP and lipids. However, the combined effect of BaP and HFD on atherosclerosis and lipid accumulation in the arterial wall, the initial stage of atherosclerosis, is unclear. In this study, C57BL/6 J mice were subchronically exposed to BaP and a HFD, and the mechanism of lipid accumulation was investigated in EA.hy926 and HEK293 cells. Results showed that BaP and HFD increased blood lipids and damaged aortic wall synergistically. Meanwhile, LDL enhanced the toxicity of BaP, and BaP promoted the production of reactive oxygen species and malonaldehyde in EA.hy926 cells, which aggravated LDL-induced cell injury. Moreover, BaP and HFD/LDL induced LDL accumulation in the aortic wall of C57BL/6 J mice/EA.hy926, and the mechanism was by activating AHR/ARNT heterodimer to combine with the scavenger receptor BⅠ (SR-BⅠ) and activin receptor-like kinase 1 (ALK1) promoter regions to transcriptional upregulate its expression, which enhanced the uptake of LDL, and promoting the production of AGEs to inhibit reverse cholesterol transport by SR-BI. BaP and lipid synergistically promoted aortic and endothelial damage, and the health risk of their combined intake should be paid attention to.


Assuntos
Aterosclerose , Lipoproteínas LDL , Camundongos , Animais , Humanos , Dieta Hiperlipídica/efeitos adversos , Benzo(a)pireno/toxicidade , Células HEK293 , Camundongos Endogâmicos C57BL , Aterosclerose/induzido quimicamente , Receptores Depuradores , Endotélio
2.
Materials (Basel) ; 17(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255519

RESUMO

This study aims to enhance the productivity of high-voltage transmission line insulators and their operational safety by investigating their failure mechanisms under ultimate load conditions. Destructive tests were conducted on a specific type of insulator under ultimate load conditions. A high-speed camera was used to document the insulator's failure process and collect strain data from designated points. A simulation model of the insulator was established to predict the effects of ultimate loads. The simulation results identified a maximum first principal stress of 94.549 MPa in the porcelain shell, with stress distribution characteristics resembling a cantilever beam subjected to bending. This implied that the insulator failure occurred when the stress reached the bending strength of the porcelain shell. To validate the simulation's accuracy, bending and tensile strength tests were conducted on the ceramic materials constituting the insulator. The bending strength of the porcelain shell was 100.52 MPa, showing a 5.6% variation from the simulation results, which indicated the reliability of the simulation model. Finally, optimization designs on the design parameters P1 and P2 of the insulator were conducted. The results indicated that setting P1 to 8° and P2 to 90.062 mm decreased the first principal stress of the porcelain shell by 47.6% and Von Mises stress by 31.6% under ultimate load conditions, significantly enhancing the load-bearing capacity. This research contributed to improving the production yield and safety performance of insulators.

3.
Polymers (Basel) ; 15(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139959

RESUMO

The process of solid propellant production, which is the most widely used high-energy material, has garnered significant attention from researchers. However, there have been relatively few studies on its processing, due to the unique nature of the casting process. This paper aims to further analyze the pouring process of the propellant slurry. Initially, we obtained a sample of the propellant slurry and measured its rheological parameters using a rotary rheometer. From the analysis of the experimental results, we derived the viscosity parameters and the yield values of the propellant slurry. Subsequently, we simulated the pouring process, setting the slurry parameters based on the data obtained from the rheological measurement experiment. The simulation results demonstrated that the flower plate significantly impacts upon the cutting and separating effect on the slurry during pouring. Upon leaving the flower plate, the slurry descends onto the core mold platform under the influence of gravity, gradually flowing along the edge of the core mold. Although there may be some small voids in the pouring process, the voids will disappear completely at the end of pouring. A comparison with the actual pouring situation revealed a higher consistency between the simulation results and reality, thus establishing the reliability of the simulation method as a reference for analyzing the pouring process.

4.
Polymers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616352

RESUMO

As a typical viscoelastic material, solid propellants have a large difference in mechanical properties under static and dynamic loading. This variability is manifested in the difference in values of the relaxation modulus and dynamic modulus, which serve as the entry point for studying the dynamic and static mechanical properties of propellants. The relaxation modulus and dynamic modulus have a clear integral relationship in theory, but their consistency in engineering practice has never been verified. In this paper, by introducing the "catch-up factor λ" and "waiting factor γ", a method for the inter-conversion of the dynamic storage modulus and relaxation modulus of HTPB propellant is established, and the consistency between them is verified. The results show that the time region of the calculated conversion values of the relaxation modulus obtained by this method covers 10−8−104 s, spanning twelve orders of magnitude. Compared to that of the relaxation modulus (10−4−104 s, spanning eight orders of magnitude), an expansion of four orders of magnitude is achieved. This enhances the expression ability of the relaxation modulus on the mechanical properties of the propellant. Furthermore, when the conversion method is applied to the dynamic−static modulus conversion of the other two HTPB propellants, the results show that the correlation coefficient between the calculated and measured conversion values is R2 > 0.933. This proves the applicability of this method to the dynamic−static modulus conversion of other types of HTPB propellants. It was also found that λ and γ have the same universal optimal value for different HTPB propellants. As a bridge for static and dynamic modulus conversion, this method greatly expands the expression ability of the relaxation modulus and dynamic storage modulus on the mechanical properties of the HTPB propellant, which is of great significance in the research into the mechanical properties of the propellant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA