Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Biol Chem ; 297(1): 100908, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34171357

RESUMO

The cAMP response element-binding protein (CREB) is an important regulator of cell growth, metabolism, and synaptic plasticity. CREB is activated through phosphorylation of an evolutionarily conserved Ser residue (S133) within its intrinsically disordered kinase-inducible domain (KID). Phosphorylation of S133 in response to cAMP, Ca2+, and other stimuli triggers an association of the KID with the KID-interacting (KIX) domain of the CREB-binding protein (CBP), a histone acetyl transferase (HAT) that promotes transcriptional activation. Here we addressed the mechanisms of CREB attenuation following bursts in CREB phosphorylation. We show that phosphorylation of S133 is reversed by protein phosphatase 2A (PP2A), which is recruited to CREB through its B56 regulatory subunits. We found that a B56-binding site located at the carboxyl-terminal boundary of the KID (BS2) mediates high-affinity B56 binding, while a second binding site (BS1) located near the amino terminus of the KID mediates low affinity binding enhanced by phosphorylation of adjacent casein kinase (CK) phosphosites. Mutations that diminished B56 binding to BS2 elevated both basal and stimulus-induced phosphorylation of S133, increased CBP interaction with CREB, and potentiated the expression of CREB-dependent reporter genes. Cells from mice harboring a homozygous CrebE153D mutation that disrupts BS2 exhibited increased S133 phosphorylation stoichiometry and elevated transcriptional bursts to cAMP. These findings provide insights into substrate targeting by PP2A holoenzymes and establish a new mechanism of CREB attenuation that has implications for understanding CREB signaling in cell growth, metabolism, synaptic plasticity, and other physiologic contexts.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteína Fosfatase 2/química , Animais , Sítios de Ligação , Células Cultivadas , Células HeLa , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Ativação Transcricional
2.
J Biol Chem ; 297(3): 101049, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375640

RESUMO

Fused in sarcoma (FUS) encodes an RNA-binding protein with diverse roles in transcriptional activation and RNA splicing. While oncogenic fusions of FUS and transcription factor DNA-binding domains are associated with soft tissue sarcomas, dominant mutations in FUS can cause amyotrophic lateral sclerosis. FUS has also been implicated in genome maintenance. However, the underlying mechanisms of its actions in genome stability are unknown. Here, we applied gene editing, functional reconstitution, and integrated proteomics and transcriptomics to illuminate roles for FUS in DNA replication and repair. Consistent with a supportive role in DNA double-strand break repair, FUS-deficient cells exhibited subtle alterations in the recruitment and retention of double-strand break-associated factors, including 53BP1 and BRCA1. FUS-/- cells also exhibited reduced proliferative potential that correlated with reduced speed of replication fork progression, diminished loading of prereplication complexes, enhanced micronucleus formation, and attenuated expression and splicing of S-phase-associated genes. Finally, FUS-deficient cells exhibited genome-wide alterations in DNA replication timing that were reversed upon re-expression of FUS complementary DNA. We also showed that FUS-dependent replication domains were enriched in transcriptionally active chromatin and that FUS was required for the timely replication of transcriptionally active DNA. These findings suggest that alterations in DNA replication kinetics and programming contribute to genome instability and functional defects in FUS-deficient cells.


Assuntos
Período de Replicação do DNA , Proteína FUS de Ligação a RNA/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proliferação de Células , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Cinética , Proteína FUS de Ligação a RNA/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
3.
PLoS Biol ; 14(9): e1002550, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27618482

RESUMO

Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , MAP Quinase Quinase 7/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Brotos de Planta/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Ácidos Indolacéticos/metabolismo , MAP Quinase Quinase 7/química , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana Transportadoras/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Fosforilação , Desenvolvimento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Transporte Proteico
4.
Elife ; 122023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039476

RESUMO

Mutations in the ubiquitin (Ub) chaperone Ubiquilin 2 (UBQLN2) cause X-linked forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) through unknown mechanisms. Here, we show that aggregation-prone, ALS-associated mutants of UBQLN2 (UBQLN2ALS) trigger heat stress-dependent neurodegeneration in Drosophila. A genetic modifier screen implicated endolysosomal and axon guidance genes, including the netrin receptor, Unc-5, as key modulators of UBQLN2 toxicity. Reduced gene dosage of Unc-5 or its coreceptor Dcc/frazzled diminished neurodegenerative phenotypes, including motor dysfunction, neuromuscular junction defects, and shortened lifespan, in flies expressing UBQLN2ALS alleles. Induced pluripotent stem cells (iPSCs) harboring UBQLN2ALS knockin mutations exhibited lysosomal defects while inducible motor neurons (iMNs) expressing UBQLN2ALS alleles exhibited cytosolic UBQLN2 inclusions, reduced neurite complexity, and growth cone defects that were partially reversed by silencing of UNC5B and DCC. The combined findings suggest that altered growth cone dynamics are a conserved pathomechanism in UBQLN2-associated ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Orientação de Axônios , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Mutação , Fatores de Transcrição/genética , Ubiquitinas/metabolismo , Receptores de Netrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA