Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 183(6): 1714-1731.e10, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33275901

RESUMO

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Assuntos
Proteínas Quinases/metabolismo , Proteólise , Proteoma/metabolismo , Adulto , Linhagem Celular , Bases de Dados de Proteínas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/genética , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem
2.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626263

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Assuntos
Complexo de Golgi , Herpesvirus Humano 8 , Lipoilação , Proteínas Virais , Vírion , Replicação Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Humanos , Vírion/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral/fisiologia , Células HEK293
3.
Br J Cancer ; 129(8): 1238-1250, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37626264

RESUMO

BACKGROUND: Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibition yields differential cellular responses in multiple tumor models due to redundancy in cell cycle. We investigate whether the differential requirements of CDKs in multiple cell lines function as determinant of response to pharmacological agents that target these kinases. METHODS: We utilized proteolysis-targeted chimeras (PROTACs) that are conjugated with palbociclib (Palbo-PROTAC) to degrade both CDK4 and CDK6. FN-POM was synthesized by chemically conjugating pomalidomide moiety with a multi-kinase inhibitor, FN-1501. Patient derived PDAC organoids and PDX model were utilized to investigate the effect of FN-POM in combination with palbociclib. RESULTS: Palbo-PROTAC mediates differential impact on cell cycle in different tumor models, indicating that the dependencies to CDK4 and 6 kinases are heterogenous. Cyclin E overexpression uncouples cell cycle from CDK4/6 and drives resistance to palbo-PROTAC. Elevated expression of P16INK4A antagonizes PROTAC-mediated degradation of CDK4 and 6. FN-POM degrades cyclin E and CDK2 and inhibits cell cycle progression in P16INK4A-high tumor models. Combination of palbociclib and FN-POM cooperatively inhibit tumor cell proliferation via RB activation. CONCLUSION: Resistance to CDK4/6 inhibition could be overcome by pharmacologically limiting Cyclin E/CDK2 complex and proves to be a potential therapeutic approach.

4.
Chembiochem ; 24(19): e202300141, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37088717

RESUMO

Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials. Here, using structure-guided design, we report the development of a selective FAK inhibitor (BSJ-04-175) and degrader (BSJ-04-146) to evaluate the consequences and advantages of abolishing all FAK activity in cancer models. BSJ-04-146 achieves rapid and potent FAK degradation with high proteome-wide specificity in cancer cells and induces durable degradation in mice. Compared to kinase inhibition, targeted degradation of FAK exhibits pronounced improved activity on downstream signaling and cancer cell viability and migration. Together, BSJ-04-175 and BSJ-04-146 are valuable chemical tools to dissect the specific consequences of targeting FAK through small-molecule inhibition or degradation.


Assuntos
Neoplasias , Quimera de Direcionamento de Proteólise , Camundongos , Animais , Proteína-Tirosina Quinases de Adesão Focal/química , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
5.
Nat Chem Biol ; 17(6): 675-683, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753926

RESUMO

Cyclin-dependent kinase 12 (CDK12) is an emerging therapeutic target due to its role in regulating transcription of DNA-damage response (DDR) genes. However, development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. In the present study, we report the rational design and characterization of a CDK12-specific degrader, BSJ-4-116. BSJ-4-116 selectively degraded CDK12 as assessed through quantitative proteomics. Selective degradation of CDK12 resulted in premature cleavage and poly(adenylation) of DDR genes. Moreover, BSJ-4-116 exhibited potent antiproliferative effects, alone and in combination with the poly(ADP-ribose) polymerase inhibitor olaparib, as well as when used as a single agent against cell lines resistant to covalent CDK12 inhibitors. Two point mutations in CDK12 were identified that confer resistance to BSJ-4-116, demonstrating a potential mechanism that tumor cells can use to evade bivalent degrader molecules.


Assuntos
Quinases Ciclina-Dependentes/efeitos dos fármacos , Animais , Dano ao DNA/genética , Desenho de Fármacos , Descoberta de Drogas , Resistência a Medicamentos , Humanos , Poli A/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteômica
6.
Nat Chem Biol ; 14(2): 163-170, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251720

RESUMO

Cyclin-dependent kinase 9 (CDK9), an important regulator of transcriptional elongation, is a promising target for cancer therapy, particularly for cancers driven by transcriptional dysregulation. We characterized NVP-2, a selective ATP-competitive CDK9 inhibitor, and THAL-SNS-032, a selective CDK9 degrader consisting of a CDK-binding SNS-032 ligand linked to a thalidomide derivative that binds the E3 ubiquitin ligase Cereblon (CRBN). To our surprise, THAL-SNS-032 induced rapid degradation of CDK9 without affecting the levels of other SNS-032 targets. Moreover, the transcriptional changes elicited by THAL-SNS-032 were more like those caused by NVP-2 than those induced by SNS-032. Notably, compound washout did not significantly reduce levels of THAL-SNS-032-induced apoptosis, suggesting that CDK9 degradation had prolonged cytotoxic effects compared with CDK9 inhibition. Thus, our findings suggest that thalidomide conjugation represents a promising strategy for converting multi-targeted inhibitors into selective degraders and reveal that kinase degradation can induce distinct pharmacological effects compared with inhibition.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/química , Peptídeo Hidrolases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Ligantes , Oxazóis/farmacologia , Fosforilação , Ligação Proteica , Conformação Proteica , Proteômica , Talidomida/farmacologia , Tiazóis/farmacologia , Ubiquitina-Proteína Ligases
7.
J Am Chem Soc ; 141(1): 191-203, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30518210

RESUMO

Despite recent clinical successes for irreversible drugs, potential toxicities mediated by unpredictable modification of off-target cysteines represents a major hurdle for expansion of covalent drug programs. Understanding the proteome-wide binding profile of covalent inhibitors can significantly accelerate their development; however, current mass spectrometry strategies typically do not provide a direct, amino acid level readout of covalent activity for complex, selective inhibitors. Here we report the development of CITe-Id, a novel chemoproteomic approach that employs covalent pharmacologic inhibitors as enrichment reagents in combination with an optimized proteomic platform to directly quantify dose-dependent binding at cysteine-thiols across the proteome. CITe-Id analysis of our irreversible CDK inhibitor THZ1 identified dose-dependent covalent modification of several unexpected kinases, including a previously unannotated cysteine (C840) on the understudied kinase PKN3. These data streamlined our development of JZ128 as a new selective covalent inhibitor of PKN3. Using JZ128 as a probe compound, we identified novel potential PKN3 substrates, thus offering an initial molecular view of PKN3 cellular activity. CITe-Id provides a powerful complement to current chemoproteomic platforms to characterize the selectivity of covalent inhibitors, identify new, pharmacologically addressable cysteine-thiols, and inform structure-based drug design programs.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteômica , Sequência de Aminoácidos , Domínio Catalítico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Modelos Moleculares , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Quinase Ativadora de Quinase Dependente de Ciclina
8.
Nat Chem Biol ; 13(10): 1102-1108, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805801

RESUMO

Enhancing production of the anti-inflammatory cytokine interleukin-10 (IL-10) is a promising strategy to suppress pathogenic inflammation. To identify new mechanisms regulating IL-10 production, we conducted a phenotypic screen for small molecules that enhance IL-10 secretion from activated dendritic cells. Mechanism-of-action studies using a prioritized hit from the screen, BRD6989, identified the Mediator-associated kinase CDK8, and its paralog CDK19, as negative regulators of IL-10 production during innate immune activation. The ability of BRD6989 to upregulate IL-10 is recapitulated by multiple, structurally differentiated CDK8 and CDK19 inhibitors and requires an intact cyclin C-CDK8 complex. Using a highly parallel pathway reporter assay, we identified a role for enhanced AP-1 activity in IL-10 potentiation following CDK8 and CDK19 inhibition, an effect associated with reduced phosphorylation of a negative regulatory site on c-Jun. These findings identify a function for CDK8 and CDK19 in regulating innate immune activation and suggest that these kinases may warrant consideration as therapeutic targets for inflammatory disorders.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Interleucina-10/biossíntese , Células Mieloides/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células Cultivadas , Quinase 8 Dependente de Ciclina/imunologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-10/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Células Mieloides/imunologia , Células Mieloides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
9.
Angew Chem Int Ed Engl ; 58(19): 6321-6326, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802347

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) are key regulators of the cell cycle, and there are FDA-approved CDK4/6 inhibitors for treating patients with metastatic breast cancer. However, due to conservation of their ATP-binding sites, development of selective agents has remained elusive. Here, we report imide-based degrader molecules capable of degrading both CDK4/6, or selectively degrading either CDK4 or CDK6. We were also able to tune the activity of these molecules against Ikaros (IKZF1) and Aiolos (IKZF3), which are well-established targets of imide-based degraders. We found that in mantle cell lymphoma cell lines, combined IKZF1/3 degradation with dual CDK4/6 degradation produced enhanced anti-proliferative effects compared to CDK4/6 inhibition, CDK4/6 degradation, or IKZF1/3 degradation. In summary, we report here the first compounds capable of inducing selective degradation of CDK4 and CDK6 as tools to pharmacologically dissect their distinct biological functions.


Assuntos
Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Humanos , Fator de Transcrição Ikaros/metabolismo , Imidas/química , Piperazinas/química , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/química , Piridinas/farmacologia
10.
Nat Commun ; 15(1): 2377, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493213

RESUMO

Tumor cells must rewire nucleotide synthesis to satisfy the demands of unbridled proliferation. Meanwhile, they exhibit augmented reactive oxygen species (ROS) production which paradoxically damages DNA and free deoxy-ribonucleoside triphosphates (dNTPs). How these metabolic processes are integrated to fuel tumorigenesis remains to be investigated. MYC family oncoproteins coordinate nucleotide synthesis and ROS generation to drive the development of numerous cancers. We herein perform a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based functional screen targeting metabolic genes and identified nudix hydrolase 1 (NUDT1) as a MYC-driven dependency. Mechanistically, MYC orchestrates the balance of two metabolic pathways that act in parallel, the NADPH oxidase 4 (NOX4)-ROS pathway and the Polo like kinase 1 (PLK1)-NUDT1 nucleotide-sanitizing pathway. We describe LC-1-40 as a potent, on-target degrader that depletes NUDT1 in vivo. Administration of LC-1-40 elicits excessive nucleotide oxidation, cytotoxicity and therapeutic responses in patient-derived xenografts. Thus, pharmacological targeting of NUDT1 represents an actionable MYC-driven metabolic liability.


Assuntos
Nucleotídeos , Nudix Hidrolases , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Nucleotídeos/metabolismo
12.
Cell Chem Biol ; 30(4): 383-393.e6, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37015223

RESUMO

Interleukin (IL)-2-inducible T cell kinase (ITK) is essential for T cell receptor (TCR) signaling and plays an integral role in T cell proliferation and differentiation. Unlike the ITK homolog BTK, no inhibitors of ITK are currently US Food and Drug Administration (FDA) approved. In addition, recent studies have identified mutations within BTK that confer resistance to both covalent and non-covalent inhibitors. Here, as an alternative strategy, we report the development of BSJ-05-037, a potent and selective heterobifunctional degrader of ITK. BSJ-05-037 displayed enhanced anti-proliferative effects relative to its parent inhibitor BMS-509744, blocked the activation of NF-kB/GATA-3 signaling, and increased the sensitivity of T cell lymphoma cells to cytotoxic chemotherapy both in vitro and in vivo. In summary, targeted degradation of ITK is a novel approach to modulate TCR signal strength that could have broad application for the investigation and treatment of T cell-mediated diseases.


Assuntos
Linfoma de Células T , Transdução de Sinais , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linfócitos T , Linfoma de Células T/tratamento farmacológico
13.
J Med Chem ; 66(8): 5524-5535, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37036171

RESUMO

Heterobifunctional degraders, known as proteolysis targeting chimeras (PROTACs), theoretically possess a catalytic mode-of-action, yet few studies have either confirmed or exploited this potential advantage of event-driven pharmacology. Degraders of oncogenic EML4-ALK fusions were developed by conjugating ALK inhibitors to cereblon ligands. Simultaneous optimization of pharmacology and compound properties using ternary complex modeling and physicochemical considerations yielded multiple catalytic degraders that were more resilient to clinically relevant ATP-binding site mutations than kinase inhibitor drugs. Our strategy culminated in the design of the orally bioavailable derivative CPD-1224 that avoided hemolysis (a feature of detergent-like PROTACs), degraded the otherwise recalcitrant mutant L1196M/G1202R in vivo, and commensurately slowed tumor growth, while the third generation ALK inhibitor drug lorlatinib had no effect. These results validate our original therapeutic hypothesis by exemplifying opportunities for catalytic degraders to proactively address binding site resistant mutations in cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Quinase do Linfoma Anaplásico , Antineoplásicos/farmacologia , Receptores Proteína Tirosina Quinases , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Mutação , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão Oncogênica/genética
14.
Cell Rep ; 42(4): 112314, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37000627

RESUMO

Elucidating the mechanisms of resistance to immunotherapy and developing strategies to improve its efficacy are challenging goals. Bioinformatics analysis demonstrates that high CDK6 expression in melanoma is associated with poor progression-free survival of patients receiving single-agent immunotherapy. Depletion of CDK6 or cyclin D3 (but not of CDK4, cyclin D1, or D2) in cells of the tumor microenvironment inhibits tumor growth. CDK6 depletion reshapes the tumor immune microenvironment, and the host anti-tumor effect depends on cyclin D3/CDK6-expressing CD8+ and CD4+ T cells. This occurs by CDK6 phosphorylating and increasing the activities of PTP1B and T cell protein tyrosine phosphatase (TCPTP), which, in turn, decreases tyrosine phosphorylation of CD3ζ, reducing the signal transduction for T cell activation. Administration of a PTP1B and TCPTP inhibitor prove more efficacious than using a CDK6 degrader in enhancing T cell-mediated immunotherapy. Targeting protein tyrosine phosphatases (PTPs) might be an effective strategy for cancer patients who resist immunotherapy treatment.


Assuntos
Quinase 6 Dependente de Ciclina , Neoplasias , Humanos , Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Transdução de Sinais , Fosforilação , Imunoterapia , Quinase 4 Dependente de Ciclina/metabolismo , Microambiente Tumoral
15.
Nat Commun ; 13(1): 1700, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361799

RESUMO

Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15-25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8+ T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. Thus, our study reveals a potential combined therapeutic strategy to utilize a USP8 inhibitor and PD-1/PD-L1 blockade for enhancing anti-tumor efficacy.


Assuntos
Endopeptidases , Complexos Endossomais de Distribuição Requeridos para Transporte , Imunoterapia , Neoplasias , Microambiente Tumoral , Ubiquitina Tiolesterase , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética
16.
Cancer Discov ; 12(2): 356-371, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34544752

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) represent a major therapeutic vulnerability for breast cancer. The kinases are clinically targeted via ATP competitive inhibitors (CDK4/6i); however, drug resistance commonly emerges over time. To understand CDK4/6i resistance, we surveyed over 1,300 breast cancers and identified several genetic alterations (e.g., FAT1, PTEN, or ARID1A loss) converging on upregulation of CDK6. Mechanistically, we demonstrate CDK6 causes resistance by inducing and binding CDK inhibitor INK4 proteins (e.g., p18INK4C). In vitro binding and kinase assays together with physical modeling reveal that the p18INK4C-cyclin D-CDK6 complex occludes CDK4/6i binding while only weakly suppressing ATP binding. Suppression of INK4 expression or its binding to CDK6 restores CDK4/6i sensitivity. To overcome this constraint, we developed bifunctional degraders conjugating palbociclib with E3 ligands. Two resulting lead compounds potently degraded CDK4/6, leading to substantial antitumor effects in vivo, demonstrating the promising therapeutic potential for retargeting CDK4/6 despite CDK4/6i resistance. SIGNIFICANCE: CDK4/6 kinase activation represents a common mechanism by which oncogenic signaling induces proliferation and is potentially targetable by ATP competitive inhibitors. We identify a CDK6-INK4 complex that is resilient to current-generation inhibitors and develop a new strategy for more effective inhibition of CDK4/6 kinases.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Resistencia a Medicamentos Antineoplásicos , Piperazinas/química , Inibidores de Proteínas Quinases/química , Piridinas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proteínas Inibidoras de Quinase Dependente de Ciclina/administração & dosagem , Proteínas Inibidoras de Quinase Dependente de Ciclina/uso terapêutico , Feminino , Humanos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo
17.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34255748

RESUMO

PFKP (phosphofructokinase, platelet), the major isoform of PFK1 expressed in T cell acute lymphoblastic leukemia (T-ALL), is predominantly expressed in the cytoplasm to carry out its glycolytic function. Our study showed that PFKP is a nucleocytoplasmic shuttling protein with functional nuclear export and nuclear localization sequences (NLSs). Cyclin D3/CDK6 facilitated PFKP nuclear translocation by dimerization and by exposing the NLS of PFKP to induce the interaction between PFKP and importin 9. Nuclear PFKP stimulated the expression of C-X-C chemokine receptor type 4 (CXCR4), a chemokine receptor regulating leukemia homing/infiltration, to promote T-ALL cell invasion, which depended on the activity of c-Myc. In vivo experiments showed that nuclear PFKP promoted leukemia homing/infiltration into the bone marrow, spleen, and liver, which could be blocked with CXCR4 antagonists. Immunohistochemical staining of tissues from a clinically well-annotated cohort of T cell lymphoma/leukemia patients showed nuclear PFKP localization in invasive cancers, but not in nonmalignant T lymph node or reactive hyperplasia. The presence of nuclear PFKP in these specimens correlated with poor survival in patients with T cell malignancy, suggesting the potential utility of nuclear PFKP as a diagnostic marker.


Assuntos
Fosfofrutoquinase-1 Tipo C/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores CXCR4/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Biomarcadores Tumorais/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Humanos , Carioferinas/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Modelos Moleculares , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Fosfofrutoquinase-1 Tipo C/química , Fosfofrutoquinase-1 Tipo C/genética , Prognóstico , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Tumorais Cultivadas
18.
Eur J Med Chem ; 221: 113481, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33945934

RESUMO

Development of inhibitors targeting CDK12/13 is of increasing interest as a potential therapy for cancers as these compounds inhibit transcription of DNA damage response (DDR) genes. We previously described THZ531, a covalent inhibitor with selectivity for CDK12/13. In order to elucidate structure-activity relationship (SAR), we have undertaken a medicinal chemistry campaign and established a focused library of THZ531 analogs. Among these analogs, BSJ-01-175 demonstrates exquisite selectivity, potent inhibition of RNA polymerase II phosphorylation, and downregulation of CDK12-targeted genes in cancer cells. A 3.0 Å co-crystal structure with CDK12/CycK provides a structural rational for selective targeting of Cys1039 located in a C-terminal extension from the kinase domain. With moderate pharmacokinetic properties, BSJ-01-175 exhibits efficacy against an Ewing sarcoma tumor growth in a patient-derived xenograft (PDX) mouse model following 10 mg/kg once a day, intraperitoneal administration. Taken together, BSJ-01-175 represents the first selective CDK12/13 covalent inhibitor with in vivo efficacy reported to date.


Assuntos
Anilidas/farmacologia , Proteína Quinase CDC2/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Anilidas/síntese química , Anilidas/química , Animais , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
19.
Cell Chem Biol ; 27(12): 1553-1560.e8, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32916088

RESUMO

MKK4/7 are kinases that phosphorylate JNKs and regulate the MAPK signaling pathway. Their overexpression has been associated with tumorigenesis and aggressiveness in cancers such as breast, prostate, non-small cell lung, and pediatric leukemia, making them a potential target for inhibitor development. Here, we report the discovery, development, and validation of a dual MKK4/7 inhibitor, BSJ-04-122, that covalently targets a conserved cysteine located before the DFG motif and displays excellent kinome selectivity. BSJ-04-122 exhibits potent cellular target engagement and induces robust target-specific downstream effects. The combination of the dual MKK4/7 inhibitor with a selective, covalent JNK inhibitor demonstrated an enhanced antiproliferative activity against triple-negative breast cancer cells. Taken together, the results show that BSJ-04-122 represents a pharmacological probe for MKK4/7 and credential covalent targeting as a way to explore the therapeutic potential of these kinases.


Assuntos
Desenho de Fármacos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 7/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Motivos de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/química , MAP Quinase Quinase 7/química , Modelos Moleculares
20.
Sci Adv ; 6(25): eabb2210, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32704543

RESUMO

Inhibitors of cyclin-dependent kinases CDK4 and CDK6 have been approved for treatment of hormone receptor-positive breast cancers. In contrast, triple-negative breast cancers (TNBCs) are resistant to CDK4/6 inhibition. Here, we demonstrate that a subset of TNBC critically requires CDK4/6 for proliferation, and yet, these TNBC are resistant to CDK4/6 inhibition due to sequestration of CDK4/6 inhibitors into tumor cell lysosomes. This sequestration is caused by enhanced lysosomal biogenesis and increased lysosomal numbers in TNBC cells. We developed new CDK4/6 inhibitor compounds that evade the lysosomal sequestration and are efficacious against resistant TNBC. We also show that coadministration of lysosomotropic or lysosome-destabilizing compounds (an antibiotic azithromycin, an antidepressant siramesine, an antimalaria compound chloroquine) renders resistant tumor cells sensitive to currently used CDK4/6 inhibitors. Lastly, coinhibition of CDK2 arrested proliferation of CDK4/6 inhibitor-resistant cells. These observations may extend the use of CDK4/6 inhibitors to TNBCs that are refractory to current anti-CDK4/6 therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA