Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Image Anal ; 95: 103194, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749304

RESUMO

Real-time diagnosis of intracerebral hemorrhage after thrombectomy is crucial for follow-up treatment. However, this is difficult to achieve with standard single-energy CT (SECT) due to similar CT values of blood and contrast agents under a single energy spectrum. In contrast, dual-energy CT (DECT) scanners employ two different energy spectra, which allows for real-time differentiation between hemorrhage and contrast extravasation based on energy-related attenuation characteristics. Unfortunately, DECT scanners are not as widely used as SECT scanners due to their high costs. To address this dilemma, in this paper, we generate pseudo DECT images from a SECT image for real-time diagnosis of hemorrhage. More specifically, we propose a SECT-to-DECT Transformer-based Generative Adversarial Network (SDTGAN), which is a 3D transformer-based multi-task learning framework equipped with a shared attention mechanism. In this way, SDTGAN can be guided to focus more on high-density areas (crucial for hemorrhage diagnosis) during the generation. Meanwhile, the introduced multi-task learning strategy and the shared attention mechanism also enable SDTGAN to model dependencies between interconnected generation tasks, improving generation performance while significantly reducing model parameters and computational complexity. In the experiments, we approximate real SECT images using mixed 120kV images from DECT data to address the issue of not being able to obtain the true paired DECT and SECT data. Extensive experiments demonstrate that SDTGAN can generate DECT images better than state-of-the-art methods. The code of our implementation is available at https://github.com/jiang-cw/SDTGAN.


Assuntos
Hemorragia Cerebral , Tomografia Computadorizada por Raios X , Hemorragia Cerebral/diagnóstico por imagem , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
2.
Neural Netw ; 178: 106426, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38878640

RESUMO

Multi-phase dynamic contrast-enhanced magnetic resonance imaging image registration makes a substantial contribution to medical image analysis. However, existing methods (e.g., VoxelMorph, CycleMorph) often encounter the problem of image information misalignment in deformable registration tasks, posing challenges to the practical application. To address this issue, we propose a novel smooth image sampling method to align full organic information to realize detail-preserving image warping. In this paper, we clarify that the phenomenon about image information mismatch is attributed to imbalanced sampling. Then, a sampling frequency map constructed by sampling frequency estimators is utilized to instruct smooth sampling by reducing the spatial gradient and discrepancy between all-ones matrix and sampling frequency map. In addition, our estimator determines the sampling frequency of a grid voxel in the moving image by aggregating the sum of interpolation weights from warped non-grid sampling points in its vicinity and vectorially constructs sampling frequency map through projection and scatteration. We evaluate the effectiveness of our approach through experiments on two in-house datasets. The results showcase that our method preserves nearly complete details with ideal registration accuracy compared with several state-of-the-art registration methods. Additionally, our method exhibits a statistically significant difference in the regularity of the registration field compared to other methods, at a significance level of p < 0.05. Our code will be released at https://github.com/QingRui-Sha/SFM.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37159324

RESUMO

Positron emission tomography (PET) is an important functional imaging technology in early disease diagnosis. Generally, the gamma ray emitted by standard-dose tracer inevitably increases the exposure risk to patients. To reduce dosage, a lower dose tracer is often used and injected into patients. However, this often leads to low-quality PET images. In this article, we propose a learning-based method to reconstruct total-body standard-dose PET (SPET) images from low-dose PET (LPET) images and corresponding total-body computed tomography (CT) images. Different from previous works focusing only on a certain part of human body, our framework can hierarchically reconstruct total-body SPET images, considering varying shapes and intensity distributions of different body parts. Specifically, we first use one global total-body network to coarsely reconstruct total-body SPET images. Then, four local networks are designed to finely reconstruct head-neck, thorax, abdomen-pelvic, and leg parts of human body. Moreover, to enhance each local network learning for the respective local body part, we design an organ-aware network with a residual organ-aware dynamic convolution (RO-DC) module by dynamically adapting organ masks as additional inputs. Extensive experiments on 65 samples collected from uEXPLORER PET/CT system demonstrate that our hierarchical framework can consistently improve the performance of all body parts, especially for total-body PET images with PSNR of 30.6 dB, outperforming the state-of-the-art methods in SPET image reconstruction.

4.
IEEE Trans Med Imaging ; 42(10): 2974-2987, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37141060

RESUMO

Positron Emission Tomography (PET) is an important nuclear medical imaging technique, and has been widely used in clinical applications, e.g., tumor detection and brain disease diagnosis. As PET imaging could put patients at risk of radiation, the acquisition of high-quality PET images with standard-dose tracers should be cautious. However, if dose is reduced in PET acquisition, the imaging quality could become worse and thus may not meet clinical requirement. To safely reduce the tracer dose and also maintain high quality of PET imaging, we propose a novel and effective approach to estimate high-quality Standard-dose PET (SPET) images from Low-dose PET (LPET) images. Specifically, to fully utilize both the rare paired and the abundant unpaired LPET and SPET images, we propose a semi-supervised framework for network training. Meanwhile, based on this framework, we further design a Region-adaptive Normalization (RN) and a structural consistency constraint to track the task-specific challenges. RN performs region-specific normalization in different regions of each PET image to suppress negative impact of large intensity variation across different regions, while the structural consistency constraint maintains structural details during the generation of SPET images from LPET images. Experiments on real human chest-abdomen PET images demonstrate that our proposed approach achieves state-of-the-art performance quantitatively and qualitatively.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Doses de Radiação , Processamento de Imagem Assistida por Computador/métodos
5.
Nat Commun ; 13(1): 2096, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440592

RESUMO

Accurate delineation of individual teeth and alveolar bones from dental cone-beam CT (CBCT) images is an essential step in digital dentistry for precision dental healthcare. In this paper, we present an AI system for efficient, precise, and fully automatic segmentation of real-patient CBCT images. Our AI system is evaluated on the largest dataset so far, i.e., using a dataset of 4,215 patients (with 4,938 CBCT scans) from 15 different centers. This fully automatic AI system achieves a segmentation accuracy comparable to experienced radiologists (e.g., 0.5% improvement in terms of average Dice similarity coefficient), while significant improvement in efficiency (i.e., 500 times faster). In addition, it consistently obtains accurate results on the challenging cases with variable dental abnormalities, with the average Dice scores of 91.5% and 93.0% for tooth and alveolar bone segmentation. These results demonstrate its potential as a powerful system to boost clinical workflows of digital dentistry.


Assuntos
Processamento de Imagem Assistida por Computador , Dente , Inteligência Artificial , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dente/diagnóstico por imagem , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA