Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Assuntos
Akkermansia , Bacteroides , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Humanos , Masculino , Camundongos , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamases/metabolismo , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Verrucomicrobia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia
2.
Nat Chem Biol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413746

RESUMO

Intracellular recognition of lipopolysaccharide (LPS) by mouse caspase-11 or human caspase-4 is a vital event for the activation of the noncanonical inflammasome. Whether negative regulators are involved in intracellular LPS sensing is still elusive. Here we show that adipose triglyceride lipase (ATGL) is a negative regulator of the noncanonical inflammasome. Through screening for genes participating in the noncanonical inflammasome, ATGL is identified as a negative player for intracellular LPS signaling. ATGL binds LPS and catalyzes the removal of the acylated side chains that contain ester bonds. LPS with under-acylated side chains no longer activates the inflammatory caspases. Cells with ATGL deficiency exhibit enhanced immune responses when encountering intracellular LPS, including an elevated secretion of interleukin-1ß, decreased cell viability and increased cell cytotoxicity. Moreover, ATGL-deficient mice show exacerbated responses to endotoxin challenges. Our results uncover that ATGL degrades cytosolic LPS to suppress noncanonical inflammasome activation.

3.
J Am Chem Soc ; 146(6): 3974-3983, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299512

RESUMO

Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.


Assuntos
Produtos Biológicos , Galactosamina , Galactosamina/química , Hepatócitos/metabolismo , Oligonucleotídeos Antissenso/química , Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismo , Produtos Biológicos/metabolismo
5.
Sci China Life Sci ; 67(5): 854-864, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38265598

RESUMO

Tobacco smoking is a prevalent and detrimental habit practiced worldwide, increasing the risk of various diseases, including chronic obstructive pulmonary disease (COPD), cardiovascular disease, liver disease, and cancer. Although previous research has explored the detrimental health effects of tobacco smoking, recent studies suggest that gut microbiota dysbiosis may play a critical role in these outcomes. Numerous tobacco smoke components, such as nicotine, are found in the gastrointestinal tract and interact with gut microbiota, leading to lasting impacts on host health and diseases. This review delves into the ways tobacco smoking and its various constituents influence gut microbiota composition and functionality. We also summarize recent advancements in understanding how tobacco smoking-induced gut microbiota dysbiosis affects host health. Furthermore, this review introduces a novel perspective on how changes in gut microbiota following smoking cessation may contribute to withdrawal syndrome and the degree of health improvements in smokers.


Assuntos
Disbiose , Microbioma Gastrointestinal , Fumar Tabaco , Humanos , Fumar Tabaco/efeitos adversos , Disbiose/microbiologia , Nicotina/efeitos adversos , Nicotina/metabolismo , Animais , Trato Gastrointestinal/microbiologia , Abandono do Hábito de Fumar , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/etiologia
6.
Mol Metab ; 84: 101944, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642891

RESUMO

High-fat diet (HFD) has long been recognized as risk factors for the development and progression of ulcerative colitis (UC), but the exact mechanism remained elusive. Here, HFD increased intestinal deoxycholic acid (DCA) levels, and DCA further exacerbated colonic inflammation. Transcriptome analysis revealed that DCA triggered ferroptosis pathway in colitis mice. Mechanistically, DCA upregulated hypoxia-inducible factor-2α (HIF-2α) and divalent metal transporter-1 (DMT1) expression, causing the ferrous ions accumulation and ferroptosis in intestinal epithelial cells, which was reversed by ferroptosis inhibitor ferrostatin-1. DCA failed to promote colitis and ferroptosis in intestine-specific HIF-2α-null mice. Notably, byak-angelicin inhibited DCA-induced pro-inflammatory and pro-ferroptotic effects through blocking the up-regulation of HIF-2α by DCA. Moreover, fat intake was positively correlated with disease activity in UC patients consuming HFD, with ferroptosis being more pronounced. Collectively, our findings demonstrated that HFD exacerbated colonic inflammation by promoting DCA-mediated ferroptosis, providing new insights into diet-related bile acid dysregulation in UC.


Assuntos
Ácido Desoxicólico , Dieta Hiperlipídica , Ferroptose , Camundongos Endogâmicos C57BL , Animais , Ácido Desoxicólico/metabolismo , Ácido Desoxicólico/farmacologia , Ácido Desoxicólico/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Ferroptose/efeitos dos fármacos , Camundongos , Masculino , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Inflamação/metabolismo , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colo/metabolismo , Colo/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Knockout
7.
Adv Sci (Weinh) ; 11(21): e2309525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460165

RESUMO

Metabolic abnormalities contribute to the pathogenesis of obesity and its complications. Yet, the understanding of the interactions between critical metabolic pathways that underlie obesity remains to be improved, in part owing to the lack of comprehensive metabolomics studies that reconcile data from both hydrophilic and lipophilic metabolome analyses that can lead to the identification and characterization of key signaling networks. Here, the study conducts a comprehensive metabolomics analysis, surveying lipids and hydrophilic metabolites of the plasma and omental adipose tissue of obese individuals and the plasma and epididymal adipose tissue of mice. Through these approaches, it is found that a significant accumulation of ceramide due to inhibited sphingolipid catabolism, while a significant reduction in the levels of uridine monophosphate (UMP), is critical to pyrimidine biosynthesis. Further, it is found that UMP administration restores sphingolipid homeostasis and can reduce obesity in mice by reversing obesity-induced inhibition of adipocyte hypoxia inducible factor 2a (Hif2α) and its target gene alkaline ceramidase 2 (Acer2), so as to promote ceramide catabolism and alleviate its accumulation within cells. Using adipose tissue Hif2α-specific knockout mice, the study further demonstrates that the presence of UMP can alleviate obesity through a HIF2α-ACER2-ceramide pathway, which can be a new signaling axis for obesity improvement.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ceramidas , Obesidade , Transdução de Sinais , Animais , Obesidade/metabolismo , Obesidade/genética , Ceramidas/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Masculino , Ceramidase Alcalina/metabolismo , Ceramidase Alcalina/genética , Modelos Animais de Doenças , Humanos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Metabolômica/métodos
8.
Nat Metab ; 6(5): 947-962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769396

RESUMO

Polycystic ovary syndrome (PCOS), an endocrine disorder afflicting 6-20% of women of reproductive age globally, has been linked to alterations in the gut microbiome. We previously showed that in PCOS, elevation of Bacteroides vulgatus in the gut microbiome was associated with altered bile acid metabolism. Here we show that B. vulgatus also induces a PCOS-like phenotype in female mice via an alternate mechanism independent of bile acids. We find that B. vulgatus contributes to PCOS-like symptoms through its metabolite agmatine, which is derived from arginine by arginine decarboxylase. Mechanistically, agmatine activates the farnesoid X receptor (FXR) pathway to subsequently inhibit glucagon-like peptide-1 (GLP-1) secretion by L cells, which leads to insulin resistance and ovarian dysfunction. Critically, the GLP-1 receptor agonist liraglutide and the arginine decarboxylase inhibitor difluoromethylarginine ameliorate ovarian dysfunction in a PCOS-like mouse model. These findings reveal that agmatine-FXR-GLP-1 signalling contributes to ovarian dysfunction, presenting a potential therapeutic target for PCOS management.


Assuntos
Agmatina , Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Receptores Citoplasmáticos e Nucleares , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Animais , Feminino , Camundongos , Agmatina/farmacologia , Agmatina/metabolismo , Agmatina/uso terapêutico , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Resistência à Insulina , Bacteroides/efeitos dos fármacos , Humanos , Carboxiliases/metabolismo
9.
Biosens Bioelectron ; 247: 115935, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128319

RESUMO

Long-chain fatty acyl-CoAs (LCACoAs) are intermediates in lipid metabolism that exert a wide range of cellular functions. However, our knowledge about the subcellular distribution and regulatory impacts of LCACoAs is limited by a lack of methods for detecting LCACoAs in living cells and tissues. Here, we report our development of LACSerHR, a genetically encoded fluorescent biosensor that enables precise measurement of subtle fluctuations in the levels of endogenous LCACoAs in vivo. LACSerHR significantly improve the fluorescent brightness and analyte affinity, in vitro and in vivo testing showcased LACSerHR's large dynamic range. We demonstrate LACSerHR's capacity for real-time evaluation of LCACoA levels in specific subcellular compartments, for example in response to disruption of ACSL enzyme function in HEK293T cells. Moreover, we show the application of LACSerHR for sensitive measurement of elevated LCACoA levels in the livers of mouse models for two common metabolic diseases (NAFLD and type 2 diabetes). Thus, our LACSerHR sensor is a powerful, broadly applicable tool for studying LCACoAs metabolism and disease.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Fígado , Metabolismo dos Lipídeos , Acil Coenzima A/metabolismo
10.
Nat Metab ; 6(6): 1161-1177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698281

RESUMO

Diabetic cardiomyopathy is characterized by myocardial lipid accumulation and cardiac dysfunction. Bile acid metabolism is known to play a crucial role in cardiovascular and metabolic diseases. Takeda G-protein-coupled receptor 5 (TGR5), a major bile acid receptor, has been implicated in metabolic regulation and myocardial protection. However, the precise involvement of the bile acid-TGR5 pathway in maintaining cardiometabolic homeostasis remains unclear. Here we show decreased plasma bile acid levels in both male and female participants with diabetic myocardial injury. Additionally, we observe increased myocardial lipid accumulation and cardiac dysfunction in cardiomyocyte-specific TGR5-deleted mice (both male and female) subjected to a high-fat diet and streptozotocin treatment or bred on the diabetic db/db genetic background. Further investigation reveals that TGR5 deletion enhances cardiac fatty acid uptake, resulting in lipid accumulation. Mechanistically, TGR5 deletion promotes localization of CD36 on the plasma membrane through the upregulation of CD36 palmitoylation mediated by the palmitoyl acyltransferase DHHC4. Our findings indicate that the TGR5-DHHC4 pathway regulates cardiac fatty acid uptake, which highlights the therapeutic potential of targeting TGR5 in the management of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Ácidos Graxos , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Cardiomiopatias Diabéticas/metabolismo , Camundongos , Masculino , Feminino , Ácidos Graxos/metabolismo , Humanos , Camundongos Knockout , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica , Antígenos CD36/metabolismo , Antígenos CD36/genética , Miocárdio/metabolismo , Metabolismo dos Lipídeos , Miócitos Cardíacos/metabolismo , Diabetes Mellitus Experimental/metabolismo
11.
Cell Host Microbe ; 32(6): 964-979.e7, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38754418

RESUMO

The gut microbiota is closely linked to atherosclerosis. However, the role of intestinal fungi, essential members of the complex microbial community, in atherosclerosis is poorly understood. Herein, we show that gut fungi dysbiosis is implicated in patients with dyslipidemia, characterized by higher levels of Candida albicans (C. albicans), which are positively correlated with plasma total cholesterol and low-density lipoprotein-cholesterol (LDL-C) levels. Furthermore, C. albicans colonization aggravates atherosclerosis progression in a mouse model of the disease. Through gain- and loss-of-function studies, we show that an intestinal hypoxia-inducible factor 2α (HIF-2α)-ceramide pathway mediates the effect of C. albicans. Mechanistically, formyl-methionine, a metabolite of C. albicans, activates intestinal HIF-2α signaling, which drives increased ceramide synthesis to accelerate atherosclerosis. Administration of the HIF-2α selective antagonist PT2385 alleviates atherosclerosis in mice by reducing ceramide levels. Our findings identify a role for intestinal fungi in atherosclerosis progression and highlight the intestinal HIF-2α-ceramide pathway as a target for atherosclerosis treatment.


Assuntos
Aterosclerose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Candida albicans , Ceramidas , Transdução de Sinais , Animais , Candida albicans/metabolismo , Aterosclerose/microbiologia , Aterosclerose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Camundongos , Humanos , Ceramidas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Masculino , Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Intestinos/patologia , Disbiose/microbiologia , Feminino , Candidíase/microbiologia , Candidíase/metabolismo
12.
Nat Commun ; 15(1): 4755, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834568

RESUMO

Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Macrófagos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Esfingosina , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Masculino , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Humanos , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/genética , Modelos Animais de Doenças
13.
Cell Metab ; 36(8): 1823-1838.e6, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39079531

RESUMO

Time-restricted feeding (TRF) is a potent dietary intervention for improving metabolic diseases, including metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH). However, the mechanism of this efficacy has remained elusive. Here, we show that TRF improves MASLD, which is associated with a significant enrichment of Ruminococcus torques (R. torques). Mechanistically, R. torques suppresses the intestinal HIF-2α-ceramide pathway via the production of 2-hydroxy-4-methylpentanoic acid (HMP). We identify rtMor as a 4-methyl-2-oxopentanoate reductase that synthesizes HMP in R. torques. Finally, we show that either the colonization of R. torques or oral HMP supplementation can ameliorate inflammation and fibrosis in a MASH mouse model. These findings identify R. torques and HMP as potential TRF mimetics for the treatment of metabolic disorders.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ceramidas , Camundongos Endogâmicos C57BL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Camundongos , Ceramidas/metabolismo , Masculino , Fígado Gorduroso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Metabólicas/metabolismo
14.
Nat Microbiol ; 9(2): 434-450, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233647

RESUMO

A strong correlation between gut microbes and host health has been observed in numerous gut metagenomic cohort studies. However, the underlying mechanisms governing host-microbe interactions in the gut remain largely unknown. Here we report that the gut commensal Christensenella minuta modulates host metabolism by generating a previously undescribed class of secondary bile acids with 3-O-acylation substitution that inhibit the intestinal farnesoid X receptor. Administration of C. minuta alleviated features of metabolic disease in high fat diet-induced obese mice associated with a significant increase in these acylated bile acids, which we refer to as 3-O-acyl-cholic acids. Specific knockout of intestinal farnesoid X receptor in mice counteracted the beneficial effects observed in their wild-type counterparts. Finally, we showed that 3-O-acyl-CAs were prevalent in healthy humans but significantly depleted in patients with type 2 diabetes. Our findings indicate a role for C. minuta and acylated bile acids in metabolic diseases.


Assuntos
Ácidos e Sais Biliares , Diabetes Mellitus Tipo 2 , Humanos , Animais , Camundongos , Clostridiales , Dieta Hiperlipídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA