Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetes Metab Res Rev ; 40(2): e3733, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823338

RESUMO

The pathogenesis of diabetes is accompanied by increased levels of inflammatory factors, also known as "metabolic inflammation", which runs through the whole process of the occurrence and development of the disease. Mitochondria, as the key site of glucose and lipid metabolism, is often accompanied by mitochondrial function damage in type 2 diabetes mellitus (T2DM). Damaged mitochondria release pro-inflammatory factors through damage-related molecular patterns that activate inflammation pathways and reactions to oxidative stress, further aggravate metabolic disorders, and form a vicious circle. Currently, the pathogenesis of diabetes is still unclear, and clinical treatment focuses primarily on symptomatic intervention of the internal environment of disorders of glucose and lipid metabolism with limited clinical efficacy. The proinflammatory effect of mitochondrial damage-associated molecular pattern (mtDAMP) in T2DM provides a new research direction for exploring the pathogenesis and intervention targets of T2DM. Therefore, this review covers the most recent findings on the molecular mechanism and related signalling cascades of inflammation caused by mtDAMP in T2DM and discusses its pathogenic role of it in the pathological process of T2DM to search potential intervention targets.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Inflamação/metabolismo , Glucose/metabolismo , Transdução de Sinais
2.
Pharmacol Res ; 203: 107140, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513826

RESUMO

The understanding of the function of perivascular adipose tissue (PVAT) in vascular aging has significantly changed due to the increasing amount of information regarding its biology. Adipose tissue surrounding blood vessels is increasingly recognized as a key regulator of vascular disorders. It has significant endocrine and paracrine effects on the vasculature and is mediated by the production of a variety of bioactive chemicals. It also participates in a number of pathological regulatory processes, including oxidative stress, immunological inflammation, lipid metabolism, vasoconstriction, and dilation. Mechanisms of homeostasis and interactions between cells at the local level tightly regulate the function and secretory repertoire of PVAT, which can become dysregulated during vascular aging. The PVAT secretion group changes from being reducing inflammation and lowering cholesterol to increasing inflammation and increasing cholesterol in response to systemic or local inflammation and insulin resistance. In addition, the interaction between the PVAT and the vasculature is reciprocal, and the biological processes of PVAT are directly influenced by the pertinent indicators of vascular aging. The architectural and biological traits of PVAT, the molecular mechanism of crosstalk between PVAT and vascular aging, and the clinical correlation of vascular age-related disorders are all summarized in this review. In addition, this paper aims to elucidate and evaluate the potential benefits of therapeutically targeting PVAT in the context of mitigating vascular aging. Furthermore, it will discuss the latest advancements in technology used for targeting PVAT.


Assuntos
Tecido Adiposo , Envelhecimento , Vasos Sanguíneos , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Animais , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Vasos Sanguíneos/fisiologia , Vasos Sanguíneos/metabolismo , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
3.
Appl Microbiol Biotechnol ; 108(1): 213, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358546

RESUMO

Type 2 diabetes mellitus (T2DM) was reported to be associated with impaired immune response and alterations in microbial composition and function. However, the underlying mechanism remains elusive. To investigate the association among retinoic acid-inducible gene-I-like receptors (RLRs) signaling pathway, intestinal bacterial microbiome, microbial tryptophan metabolites, inflammation, and a longer course of T2DM, 14 patients with T2DM and 7 healthy controls were enrolled. 16S rRNA amplicon sequencing and untargeted metabolomics were utilized to analyze the stool samples. RNA sequencing (RNA-seq) was carried out on the peripheral blood samples. Additionally, C57BL/6J specific pathogen-free (SPF) mice were used. It was found that the longer course of T2DM could lead to a decrease in the abundance of probiotics in the intestinal microbiome. In addition, the production of microbial tryptophan derivative skatole declined as a consequence of the reduced abundance of related intestinal microbes. Furthermore, low abundances of probiotics, such as Bacteroides and Faecalibacterium, could trigger the inflammatory response by activating the RLRs signaling pathway. The increased level of the member of TNF receptor-associated factors (TRAF) family, nuclear factor kappa-B (NF-κB) activator (TANK), in the animal colon activated nuclear factor kappa B subunit 2 (NFκB2), resulting in inflammatory damage. In summary, it was revealed that the low abundances of probiotics could activate the RLR signaling pathway, which could in turn activate its downstream signaling pathway, NF-κB, highlighting a relationship among gut microbes, inflammation, and a longer course of T2DM. KEY POINTS: Hyperglycemia may suppress tryptophanase activity. The low abundance of Bacteroides combined with the decrease of Dopa decarboxylase (DDC) activity may lead to the decrease of the production of tryptophan microbial derivative skatole, and the low abundance of Bacteroides or reduced skatole may further lead to the increase of blood glucose by downregulating the expression of glucagon-like peptide-1 (GLP1). A low abundance of anti-inflammatory bacteria may induce an inflammatory response by triggering the RLR signaling pathway and then activating its downstream NF-κB signaling pathway in prolonged T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , NF-kappa B , RNA Ribossômico 16S/genética , Escatol , Triptofano , Inflamação , Bacteroides/genética
4.
J Sci Food Agric ; 104(9): 5052-5063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38284744

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMO) is associated with dysregulation of bone metabolism and gut microbiota. Quinoa is a grain with high nutritional value, and its effects and potential mechanisms on PMO have not been reported yet. Therefore, the purpose of this study is to investigate the bone protective effect of quinoa on ovariectomy (OVX) rats by regulating bone metabolism and gut microbiota. RESULTS: Quinoa significantly improved osteoporosis-related biochemical parameters of OVX rats and ameliorated ovariectomy-induced bone density reduction and trabecular structure damage. Quinoa intervention may repair the intestinal barrier by upregulating the expression of tight junction proteins in the duodenum. In addition, quinoa increased the levels of Firmicutes, and decreased the levels of Bacteroidetes and Prevotella, reversing the dysregulation of the gut microbiota. This may be related to estrogen signaling pathway, secondary and primary bile acid biosynthesis, benzoate degradation, synthesis and degradation of ketone bodies, NOD-like receptor signaling pathway and biosynthesis of tropane, piperidine and pyridine alkaloids. Correlation analysis showed that there is a strong correlation between gut microbiota with significant changes in abundance and parameters related to osteoporosis. CONCLUSION: Quinoa could significantly reverse the high intestinal permeability and change the composition of gut microbiota in OVX rats, thereby improving bone microstructure deterioration and bone metabolism disorder, and ultimately protecting the bone loss of OVX rats. © 2024 Society of Chemical Industry.


Assuntos
Densidade Óssea , Chenopodium quinoa , Microbioma Gastrointestinal , Ovariectomia , Ratos Sprague-Dawley , Animais , Ratos , Feminino , Chenopodium quinoa/química , Densidade Óssea/efeitos dos fármacos , Humanos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/prevenção & controle , Osteoporose Pós-Menopausa/microbiologia
5.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373469

RESUMO

MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) play critical roles in the regulation of different biological processes, but their underlying mechanisms in diabetes mellitus (DM) are still largely unknown. This study aimed to gain a better understanding of the functions of miRNAs and tsRNAs in the pathogenesis of DM. A high-fat diet (HFD) and streptozocin (STZ)-induced DM rat model was established. Pancreatic tissues were obtained for subsequent studies. The miRNA and tsRNA expression profiles in the DM and control groups were obtained by RNA sequencing and validated with quantitative reverse transcription-PCR (qRT-PCR). Subsequently, bioinformatics methods were used to predict target genes and the biological functions of differentially expressed miRNAs and tsRNAs. We identified 17 miRNAs and 28 tsRNAs that were significantly differentiated between the DM and control group. Subsequently, target genes were predicted for these altered miRNAs and tsRNAs, including Nalcn, Lpin2 and E2f3. These target genes were significantly enriched in localization as well as intracellular and protein binding. In addition, the results of KEGG analysis showed that the target genes were significantly enriched in the Wnt signaling pathway, insulin pathway, MAPK signaling pathway and Hippo signaling pathway. This study revealed the expression profiles of miRNAs and tsRNAs in the pancreas of a DM rat model using small RNA-Seq and predicted the target genes and associated pathways using bioinformatics analysis. Our findings provide a novel aspect in understanding the mechanisms of DM and identify potential targets for the diagnosis and treatment of DM.


Assuntos
Diabetes Mellitus Experimental , MicroRNAs , Ratos , Animais , MicroRNAs/metabolismo , RNA de Transferência/genética , Análise de Sequência de RNA , Diabetes Mellitus Experimental/genética , Pâncreas/metabolismo , Biomarcadores
6.
J Cell Mol Med ; 24(4): 2451-2463, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957265

RESUMO

This study sought to find more exon mutation sites and lncRNA candidates associated with type 2 diabetes mellitus (T2DM) patients with obesity (O-T2DM). We used O-T2DM patients and healthy individuals to detect mutations in their peripheral blood by whole-exon sequencing. And changes in lncRNA expression caused by mutation sites were studied at the RNA level. Then, we performed GO analysis and KEGG pathway analysis. We found a total of 277 377 mutation sites between O-T2DM and healthy individuals. Then, we performed a DNA-RNA joint analysis. Based on the screening of harmful sites, 30 mutant genes shared in O-T2DM patients were screened. At the RNA level, mutations of 106 differentially expressed genes were displayed. Finally, a consensus mutation site and differential expression consensus gene screening were performed. In the current study, the results revealed significant differences in exon sites in peripheral blood between O-T2DM and healthy individuals, which may play an important role in the pathogenesis of O-T2DM by affecting the expression of the corresponding lncRNA. This study provides clues to the molecular mechanisms of metabolic disorders in O-T2DM patients at the DNA and RNA levels, as well as biomarkers of the risk of these disorders.


Assuntos
Diabetes Mellitus Tipo 2/genética , Obesidade/genética , RNA Longo não Codificante/genética , Adulto , Estudos de Casos e Controles , DNA/genética , Éxons , Feminino , Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , RNA/genética , Sequenciamento do Exoma/métodos
7.
Appl Microbiol Biotechnol ; 104(16): 7143-7153, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32623494

RESUMO

The gut microbiota is crucial in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the metabolism of T2DM patients is not well-understood. We aimed to identify the differences on composition and function of gut microbiota between T2DM patients with obesity and healthy people. In this study, 6 T2DM patients with obesity and 6 healthy volunteers were recruited, and metagenomic approach and bioinformatics analysis methods were used to understand the composition of the gut microbiota and the metabolic network. We found a decrease in the abundance of Firmicutes, Oribacterium, and Paenibacillus; this may be attributed to a possible mechanism and biological basis of T2DM; moreover, we identified three critical bacterial taxa, Bacteroides plebeius, Phascolarctobacterium sp. CAG207, and the order Acidaminococcales that can potentially be used for T2DM treatment. We also revealed the composition of the microbiota through functional annotation based on multiple databases and found that carbohydrate metabolism contributed greatly to the pathogenesis of T2DM. This study helps in elucidating the different metabolic roles of microbes in T2DM patients with obesity.


Assuntos
Bactérias/classificação , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Metagenoma , Obesidade/microbiologia , Adulto , Bactérias/metabolismo , Biologia Computacional , Diabetes Mellitus Tipo 2/fisiopatologia , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade
8.
Cell Physiol Biochem ; 47(1): 378-389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794418

RESUMO

BACKGROUND/AIMS: The adverse effects of obesity on male fertility have been widely reported. In recent years, the relationship between the differential expression of proteins and long non-coding RNAs with male reproductive disease has been reported. However, the exact mechanism in underlying obesity-induced decreased male fertility remains unclear. METHODS: We used isobaric tags for relative and absolute quantification to identify differential protein expression patterns in the testis of rats fed a high-fat diet and normal diet. A microarray-based gene expression analysis protocol was used to compare the differences in long non-coding RNAs in high-fat diet-fed and normal diet-fed rats. Five obviously upregulated or downregulated proteins were examined using western blot to verify the accuracy of their expression. Then, we carried out functional enrichment analysis of the differentially expressed proteins using gene ontology and pathway analysis. Finally, the metabolic Gene Ontology terms and pathways involved in the differential metabolites were analyzed using the MetaboAnalyst 2.0 software to explore the co-expression relationship between long non-coding RNAs and proteins. RESULTS: We found 107 proteins and 263 long non-coding RNAs differentially expressed between rats fed a high-fat diet and normal diet. The Gene Ontology term enrichment analysis showed that the protein function most highly enriched was related to negative regulation of reproductive processes. We also found five Gene Ontology terms and two metabolic pathways upregulated or downregulated for both proteins and long non-coding RNAs. CONCLUSION: The study revealed different expression levels for both proteins and long non-coding RNAs and showed that the function and metabolic pathways of differently expressed proteins were related to reproductive processes. The Gene Ontology terms and metabolic pathways upregulated or downregulated in both proteins and long non-coding RNAs may provide new candidates to explore the mechanisms of obesity-induced male infertility for both protein and epigenetic pathways.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Perfilação da Expressão Gênica , Obesidade/etiologia , Obesidade/genética , Testículo/metabolismo , Animais , Peso Corporal , Ontologia Genética , Glicolipídeos/genética , Glicolipídeos/metabolismo , Masculino , Redes e Vias Metabólicas , Obesidade/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteômica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-Dawley , Sêmen/metabolismo , Testículo/ultraestrutura
9.
Mol Reprod Dev ; 85(1): 7-16, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149484

RESUMO

This study sought to identify sources of the reduced fertility of men with type 2 diabetes mellitus. Significant reductions in semen volume, sperm concentration, and total sperm count were observed in diabetic individuals, while transmission electron microscopy revealed that the structure of mitochondria in the tail of sperm from diabetic patients was damaged. Proteins potentially associated with these sperm defects were identified using proteomics. Isobaric tagging for relative and absolute quantitation labeling and high-performance liquid chromatography-tandem mass spectrometry allowed us to identify 357 proteins significantly differentially expressed in diabetic versus control semen (>1.2 or <0.83). According to gene ontology enrichment and pathway analyses, many of these differentially expressed proteins are associated with sperm function, including binding of sperm to the zona pellucida and proteasome function; of particular interest, half of these proteins were related to mitochondrial metabolism. Protein-interaction networks revealed that a decrease in Cystatin C and Dipeptidyl peptidase 4 in the mitochondria may be sources of the decreased motility of sperm from diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Fertilidade/fisiologia , Infertilidade Masculina/patologia , Mitocôndrias/metabolismo , Análise do Sêmen , Motilidade dos Espermatozoides/fisiologia , Adulto , Fator de Indução de Apoptose/análise , Biomarcadores/análise , Cromatografia Líquida de Alta Pressão , Cistatina C/análise , Diabetes Mellitus Tipo 2/etiologia , Dipeptidil Peptidase 4/análise , Humanos , Infertilidade Masculina/complicações , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/análise , Contagem de Espermatozoides , Espermatozoides/fisiologia , Espectrometria de Massas em Tandem
10.
Psychol Health Med ; 23(2): 189-197, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28621148

RESUMO

This cross-sectional study aimed to investigate the relationship between glycosylated haemoglobin (HbA1c) and cognitive vulnerability to depression (dysfunctional attitudes) in patients with type 2 diabetes mellitus. A total of 245 valid records from June 2016 to December 2016 were collected from a hospital in Beijing. Participants were asked to complete four questionnaires (Dysfunctional Attitudes Scale, Automatic Thoughts Questionnaire, Zung Self-rating Depression Scale, and World Health Organization Quality of Life Instrument-Short Form) to assess mental health and quality of life. Multivariate regression analysis was conducted to determine the correlations between HbA1c, mental health, quality of life and other clinical variables. The results showed that dysfunctional attitudes were associated with HbA1c, with a standardized regression coefficient (ß) of .13 (p = .01), although 1 h C-peptide (ß = -.75, p < .0001) was the most significant predictor of HbA1c in the regression model. The results indicated that dysfunctional attitudes, as a cognitive vulnerability to depression, were a relevant factor in HbA1c, although further studies are needed to establish the nature of the connection between dysfunctional attitudes and glycaemic control in diabetes patients.


Assuntos
Atitude , Depressão/psicologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/psicologia , Suscetibilidade a Doenças/psicologia , Hemoglobinas Glicadas/metabolismo , Pacientes Internados/psicologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Pequim , Estudos Transversais , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Análise de Regressão , Inquéritos e Questionários , Adulto Jovem
11.
Cell Physiol Biochem ; 41(1): 55-66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28135705

RESUMO

PURPOSE: Increasing evidence supported that semaphorin 3A (Sema3A), insulin-like growth factor (IGF)-1 and ß-catenin were involved in the development of osteoporosis and diabetes. This study is aimed to evaluate whether Sema3A/IGF-1/ß-catenin is directly involved in the alterations of bone microarchitecture and bone strength of diabetic rats. METHODS: Diabetic rats were induced by streptozotocin and high fat diet exposure. Bone microarchitecture and strength in the femurs were evaluated by micro-CT scanning, three-point bending examination and the stainings of HE, alizarin red S and safranin O/fast green, respectively. The alterations of lumbar spines microarchitecture were also determined by micro-CT scanning. Western blot and immunohistochemical analyses were used to examine the expression of Sema3A, ß-catenin, IGF-1, peroxisome proliferator-activated receptor γ (PPARγ) and cathepsin K in rat tibias. RESULTS: Diabetic rats exhibited decreased trabecular numbers and bone formation, but an increased trabecular separation in the femurs and lumbar spines. Moreover, the increased bone fragility and decreased bone stiffness were evident in the femurs of diabetic rats. Diabetic rats also exhibited a pronounced bone phenotype which manifested by decreased expression of Sema3A, IGF-1 and ß-catenin, as well as increased expression of cathepsin K and PPARγ. CONCLUSIONS: This study suggests that diabetes could perturb bone loss through the Sema3A/IGF-1/ß-catenin pathway. Sema3A deficiency in bone may contribute to upregulation of PPARγ and cathepsin K expression, which further disrupts bone remodeling in diabetic rats.


Assuntos
Osso e Ossos/fisiologia , Diabetes Mellitus Experimental/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Semaforina-3A/metabolismo , beta Catenina/metabolismo , Animais , Glicemia/análise , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/ultraestrutura , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Feminino , Fêmur/fisiologia , Imuno-Histoquímica , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina/toxicidade , Microtomografia por Raio-X
12.
Cell Physiol Biochem ; 39(6): 2320-2330, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832638

RESUMO

BACKGROUND: Type I diabetes is a global public health concern that affects young people of reproductive age and can damage oocytes, reducing their maturation rate and blocking embryonic development. Understanding the effects of type I diabetes on oocytes is important to facilitate the maintenance of reproductive capacity in female diabetic patients. METHODS: To analyze the effects of type I diabetes on mammalian oocytes, protein profile changes in mice with streptozotocin-induced type I diabetes were investigated using proteomic tools; non-diabetic mouse oocytes were used as controls. Immunofluorescence analysis for the spindle and mitochondria of oocytes. RESULTS: We found that type I diabetes severely disturbed the metabolic processes of mouse oocytes. We also observed significant changes in levels of histone H1, H2A/B, and H3 variants in diabetic oocytes (fold change: > 0.4 or < -0.4), with the potential to block activation of the zygotic genome and affect early embryo development. Furthermore, diabetic oocytes exhibited higher abnormal spindle formation and spatial remodeling of mitochondria than observed in the controls. CONCLUSION: Our results indicate that type I diabetes disrupts metabolic processes, spindle formation, mitochondria distribution and modulates epigenetic code in oocytes. Such effects could have a major impact on the reproductive dynamics of female patients with type I diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Oócitos/metabolismo , Proteoma/metabolismo , Animais , Western Blotting , Diferenciação Celular , Cromossomos de Mamíferos/metabolismo , Feminino , Genoma , Histonas/metabolismo , Marcação por Isótopo , Redes e Vias Metabólicas , Camundongos Endogâmicos ICR , Microtúbulos/metabolismo , Oócitos/patologia , Proteômica , Reprodutibilidade dos Testes , Fuso Acromático/metabolismo
13.
Biochem Biophys Res Commun ; 466(3): 530-5, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26381176

RESUMO

Browning of white adipocyte tissue (WAT) has received considerable attention due to its potential implication in preventing obesity and related comorbidities. Ginsenoside Rb1 is reported to improve glycolipid metabolism and reduce body weight in obese animals. However whether the body reducing effect mediates by browning effect remains unclear. For this purpose, 3T3-L1 adipocytes were used to study the effect of ginsenoside Rb1 on browning adipocytes specific genes and oxygen consumptions. The results demonstrate that 10 µM of ginsenoside Rb1 increases basal glucose uptake and promoted browning evidenced by significant increases in mRNA expressions of UCP-1, PGC-1α and PRDM16 in 3T3-L1 mature adipocytes. Further, ginsenoside Rb1 also increases PPARγ activity. And the browning effect is abrogated by GW9692, a PPARγ antagonist. In addition, ginsenoside Rb1 increases basal respiration rate, ATP production and uncoupling capacity in 3T3-L1 adipocytes. Those effects are also blunted by GW9692. The results suggest that ginsenoside Rb1 promote browning of 3T3-L1 adipocytes through induction of PPARγ. Our finding offer a new source to discover browning agonists and also useful to understand and extend the applications of ginseng and its constituents.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Ginsenosídeos/farmacologia , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Anilidas/farmacologia , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Canais Iônicos/genética , Camundongos , Proteínas Mitocondriais/genética , Consumo de Oxigênio/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Proteína Desacopladora 1
14.
Mol Reprod Dev ; 81(12): 1080-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25381886

RESUMO

As the number of young people suffering from diabetes increases worldwide, the impact of this disease on human reproduction urgently needs to be addressed. Here we compared the proteomes of cumulus cells of super-ovulated cumulus-oocyte complexes from diabetic and normal mice. We identified 57 up-regulated and 74 down-regulated proteins in diabetic cumulus cells; among these groups were proteins associated with cell cycle, cellular communication, epigenetic regulation, protein localization, and chromatin organization - all in accordance with type I diabetes. The poor-quality follicles derived from diabetic mice were further enforced by the presence of glycoproteins that are specifically expressed by the oocyte or oviductal epithelial cells in the cumulus-cell samples. In conclusion, the proteomic differences between diabetic and normal cumulus cells provide targets for improving the reproduction health of type I diabetic patients.


Assuntos
Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Regulação da Expressão Gênica/genética , Proteoma , Reprodução/genética , Animais , Western Blotting , Glicoproteínas/metabolismo , Camundongos , Mapas de Interação de Proteínas , Proteômica
15.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794255

RESUMO

BACKGROUND: Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production of sEVs using a three-dimensional (3D) bioreactor system. In addition, sEVs were developed to deliver Ginsenoside Rg1 (Rg1), a compound derived from traditional Chinese medicine, Ginseng, that has cardioprotective properties but limited bioavailability, to enhance the treatment of DIC. METHODS: The 3D bioreactor system with spinner flasks was used to expand human umbilical cord MSCs and collect MSC-conditioned medium. Subsequently, sEVs were isolated from the conditioned medium using differential ultra-centrifugation (dUC). The sEVs were loaded with Ginsenoside Rg1 by electroporation and evaluated for cardioprotective efficacy using Cell Counting Kit-8 (CCK-8) analysis, Annexin V/PI staining and live cell count of H9c2 cells under DIC. RESULTS: Using the 3D bioreactor system with spinner flasks, the expansion of MSCs reached ~600 million, and the production of sEVs was up to 2.2 × 1012 particles in five days with significantly reduced bench work compared to traditional 2D flasks. With the optimized protocol, the Ginsenoside Rg1 loading efficiency of sEVs by electroporation was ~21%, higher than sonication or co-incubation. Moreover, Rg1-loaded sEVs had attenuated DOX-induced cardiotoxicity with reduced apoptosis compared to free Ginsenoside Rg1 or sEVs. CONCLUSIONS: The 3D culture system scaled up the production of sEVs, which facilitated the Rg1 delivery and attenuated cardiomyocyte apoptosis, suggesting a potential treatment of DOX-induced cardiotoxicity.

16.
Biochem Biophys Res Commun ; 439(2): 179-86, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23994633

RESUMO

MG132 as a proteasome inhibitor could induce apoptosis in various cancer cells. This study aimed to discuss the effect of proteasome inhibitor MG132 on the TRAIL-induced apoptosis of human osteosarcoma OS732 cells. MG132 and TRAIL were applied on OS732 cells respectively or jointly. Cell survival rates, changes of cellular shape, cell apoptosis and cell invasion were analyzed, respectively, by 3-(4,5)-dimethylthiahiazo(-z-y1)-2,5-di-phenytetrazoliumromide (MTT) assay, inverted phase contrast microscope, flow cytometry, and transwell invasion chamber methods. The protein levels of DR5, caspase-3, caspase-8, p27(kip1) and MMP-9 were measured by Western blot analysis. The results indicated that combination of MG132 and TRAIL had the effect of up-regulating expression of DR5, caspase-3, caspase-8 and p27(kip1), down-regulating expression of MMP-9 and inducing apoptosis as well as suppressing the ability of invasion of OS732 cells. The survival rate of combined application of 10 µM MG132 and 100 ng/ml TRAIL on OS732 cells was significantly lower than that of the individual application (p<0.01). Changes of cellular shape and apoptotic rates also indicated the apoptosis-inducing effect of combined application was much stronger than that of individual application. Cell cycle analysis showed combination of MG132 and TRAIL mostly caused OS732 cells arrested at G2-M-phase. The invasion ability of OS732 cells was restrained significantly in the combined group compared with the individual group and control group.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Leupeptinas/farmacologia , Invasividade Neoplásica/prevenção & controle , Osteossarcoma/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Caspase 3/metabolismo , Caspase 8/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Invasividade Neoplásica/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
17.
Int J Hyperthermia ; 29(3): 248-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23527624

RESUMO

PURPOSE: This paper aimed to evaluate the effects of a combination of paclitaxel and cisplatin on osteosarcoma (OS) cell lines in the presence of hyperthermia and to investigate the related mechanism. MATERIALS AND METHODS: Two types of OS cell lines (OS732 and MG63) were treated with paclitaxel and cisplatin in the presence of hyperthermia. The survival rate was measured by MTT assay, and the clonogenic rate was measured by a clonogenic assay. The cellular changes were observed with an inverted phase contrast microscope and a fluorescence microscope. The apoptotic effect was analysed with flow cytometry (FCM). Fas expression by the OS cell lines was measured by western blot. Fas expression in OS tissue was measured by immunohistochemistry. RESULTS: Our study indicated that 1 h after the application of a combination of 10 µg/mL paclitaxel and 5 µg/mL cisplatin to OS cells at 43 °C, the survival rate of the OS cells was 11.96%, which was significantly lower than when either 10 µg/mL paclitaxel (45.02%) or 5 µg/mL cisplatin (48.69%) was applied alone (p < 0.01). Additionally, the clonogenic assay demonstrated that the clonogenic survival rate in the OS cells of the combination group was lower than that in the individual groups. Moreover, the cellular changes and apoptosis rates indicated that apoptosis in the combined application group was much greater than when either drug was applied individually. Fas expression by OS cell lines was increased by the combination of paclitaxel and cisplatin under hyperthermic conditions. More importantly, our study revealed low Fas expression in OS, which better explained the up-regulation of Fas achieved by the combination of paclitaxel and cisplatin in the presence of hyperthermia. CONCLUSIONS: The combination of paclitaxel and cisplatin increases the effects of thermochemotherapy on OS cell lines, primarily through the induction of apoptosis by the up-regulation of Fas expression.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Hipertermia Induzida , Paclitaxel/administração & dosagem , Receptor fas/metabolismo , Apoptose , Linhagem Celular , Sobrevivência Celular , Humanos , Osteossarcoma/metabolismo
18.
Diabetol Metab Syndr ; 15(1): 161, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468902

RESUMO

Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.

19.
Food Sci Nutr ; 11(9): 5137-5156, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701184

RESUMO

This study investigated the effects of supplementation Moringa oleifera leaf (MOL) on relieving oxidative stress, anti-inflammation, changed the relative abundance of multiple intestinal flora and blood biochemical indices during letrozole-induced polycystic ovary syndrome (PCOS). Previous studies have shown that MOL has anti-inflammatory, anti-oxidation, insulin-sensitizing effects. However, whether MOL has beneficial effects on PCOS remains to be elucidated. In the current study, 10-week-old female Sprague-Dawley rats received letrozole to induce PCOS-like rats, and subsequently were treated with a MOL diet. Then, the body weight and estrus cycles were measured regularly in this period. Finally, the ovarian morphology, blood biochemical indices, anti-oxidative, intestinal flora, and anti-inflammation were observed at the end of the experiment. We found that MOL supplementation markedly decreased the body weight, significantly upregulated the expression of Sirt1, FoxO1, PGC-1α, IGF1, and substantially modulated the sex hormone level and improved insulin resistance, which may be associated with the relieves oxidative stress. Moreover, the supplementation of MOL changed the relative abundance of multiple intestinal flora, the relative abundance of Fusobacterium, Prevotella were decreased, and Blautia and Parabacteroides were increased. These results indicate that MOL is potentially a supplementary medication for the management of PCOS.

20.
Biomed Pharmacother ; 161: 114434, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841025

RESUMO

Moringa oleifera leaf (MLP) contains abundant complex nutrients with anti-osteoporosis potential. However, its efficacy and mechanisms against osteoporosis remain unknown. The purpose of this research is to investigate MLP's anti-osteoporotic effects and mechanisms. Animal experiments were used in this work to validate MLP's anti-osteoporotic efficacy. We investigated the mode of action of MLP, analyzed its impact on the gut microbiota, and predicted and validated its anti-osteoporosis-related molecular targets and pathways through network pharmacology, molecular docking, and western blotting. In an ovariectomized osteoporosis rat model, MLP significantly increased bone mineral density and improved bone metabolism-related indicators, bone microstructure, and lipid profile. Moreover, it improved gut microbiota composition and increased the expression of Occludin and Claudin-1 protein in the duodenum. Network pharmacology identified a total of 97 active ingredients and 478 core anti-osteoporosis targets. Of these, MAPK1 (also known as ERK2), MAPK3 (also known as ERK1), and MAPK8 (also known as JNK) were successfully docked with the active constituents of MLP. Interestingly, MLP increased ERK and VAV3 protein expression and decreased p-ERK and JNK protein expression in the femur. These findings confirm MLP's anti-osteoporotic efficacy, which could be mediated via regulation of gut microbiota and MAPK signaling.


Assuntos
Microbioma Gastrointestinal , Moringa oleifera , Osteoporose , Ratos , Animais , Moringa oleifera/química , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Transdução de Sinais , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA