Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949537

RESUMO

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adolescente , Feminino , Idoso , Adulto , Criança , Adulto Jovem , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Idoso de 80 Anos ou mais , Pré-Escolar , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Neuroimagem/normas , Tamanho da Amostra
2.
Brain ; 146(2): 492-506, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35943854

RESUMO

Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at ∼450 000 cytosine-phosphate-guanine (CpG) sites in 9732 middle-aged to older adults from 14 community-based studies. Single CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5) and co-localized with FOLH1 expression in brain (posterior probability = 0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis and multi-omics co-localization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug-repositioning analysis indicated antihyperlipidaemic agents, more specifically peroxisome proliferator-activated receptor-alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood-brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidaemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood-brain barrier disruption.


Assuntos
Substância Branca , Pessoa de Meia-Idade , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Estudo de Associação Genômica Ampla/métodos , Encéfalo/diagnóstico por imagem , Metilação de DNA/genética , Imageamento por Ressonância Magnética , Epigênese Genética , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras
3.
Artigo em Inglês | MEDLINE | ID: mdl-38424358

RESUMO

As the brain ages, it almost invariably accumulates vascular pathology, which differentially affects the cerebral white matter. A rich body of research has investigated the link between vascular risk factors and the brain. One of the less studied questions is that among various modifiable vascular risk factors, which is the most debilitating one for white matter health? A white matter specific brain age was developed to evaluate the overall white matter health from diffusion weighted imaging, using a three-dimensional convolutional neural network deep learning model in both cross-sectional UK biobank participants (n = 37,327) and a longitudinal subset (n = 1409). White matter brain age gap (WMBAG) was the difference between the white matter age and the chronological age. Participants with one, two, and three or more vascular risk factors, compared to those without any, showed an elevated WMBAG of 0.54, 1.23, and 1.94 years, respectively. Diabetes was most strongly associated with an increased WMBAG (1.39 years, p < 0.001) among all risk factors followed by hypertension (0.87 years, p < 0.001) and smoking (0.69 years, p < 0.001). Baseline WMBAG was associated significantly with processing speed, executive and global cognition. Significant associations of diabetes and hypertension with poor processing speed and executive function were found to be mediated through the WMBAG. White matter specific brain age can be successfully targeted for the examination of the most relevant risk factors and cognition, and for tracking an individual's cerebrovascular ageing process. It also provides clinical basis for the better management of specific risk factors.

4.
Cereb Cortex ; 33(8): 4688-4698, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36178117

RESUMO

The nondemented old-old over the age of 80 comprise a rapidly increasing population group; they can be regarded as exemplars of successful aging. However, our current understanding of successful aging in advanced age and its neural underpinnings is limited. In this study, we measured the microstructural and network-based topological properties of brain white matter using diffusion-weighted imaging scans of 419 community-dwelling nondemented older participants. The participants were further divided into 230 young-old (between 72 and 79, mean = 76.25 ± 2.00) and 219 old-old (between 80 and 92, mean = 83.98 ± 2.97). Results showed that white matter connectivity in microstructure and brain networks significantly declined with increased age and that the declined rates were faster in the old-old compared with young-old. Mediation models indicated that cognitive decline was in part through the age effect on the white matter connectivity in the old-old but not in the young-old. Machine learning predictive models further supported the crucial role of declines in white matter connectivity as a neural substrate of cognitive aging in the nondemented older population. Our findings shed new light on white matter connectivity in the nondemented aging brains and may contribute to uncovering the neural substrates of successful brain aging.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Envelhecimento/psicologia , Imagem de Difusão por Ressonância Magnética , Mapeamento Encefálico
5.
Am J Orthod Dentofacial Orthop ; 165(2): 161-172.e3, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966405

RESUMO

INTRODUCTION: This prospective study analyzed changes in the oral and intestinal microbiomes in patients before and after fixed orthodontic treatment, elucidating the impacts of fixed orthodontic treatment on patient health and metabolism. METHODS: Metagenomic analysis was conducted on stool, dental plaque, and saliva samples from 10 fixed orthodontic patients. All the samples were sequenced with Illumina NovaSeq 6000 with a paired-end sequencing length of 150 bp. Identification of taxa in metagenomes and functional annotation of genes of the microbiota were performed using the data after quality control. Clinical periodontal parameters, including the gingiva index, plaque index, and pocket probing depth, were examined at each time point in triplicates. Patients also received a table to record their oral hygiene habits of brushing, flossing, and dessert consumption frequency over 1 month. RESULTS: The brushing and flossing times per day of patients were significantly increased after treatment compared with baseline. The number of times a patient ate dessert daily was also fewer after treatment than at baseline. In addition, the plaque index decreased significantly, whereas the pH value of saliva, gingiva index, and pocket probing depth did not change. No significant differences were observed between the participants before and after orthodontic treatment regarding alpha-diversity analysis of the gut, dental plaque, or saliva microbiota. However, on closer analysis, periodontal disease-associated bacteria levels in the oral cavity remain elevated. Alterations in gut microbiota were also observed after orthodontic treatment. CONCLUSIONS: The richness and diversity of the microbiome did not change significantly during the initial stage of fixed orthodontic treatment. However, the levels of periodontal disease-associated bacteria increased.


Assuntos
Placa Dentária , Microbioma Gastrointestinal , Doenças Periodontais , Humanos , Estudos Prospectivos , Metagenoma , Bactérias/genética , Índice de Placa Dentária
6.
BMC Genomics ; 24(1): 721, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031016

RESUMO

BACKGROUND: The prevalence of obese children in China is increasing, which poses a great challenge to public health. Gut microbes play an important role in human gut health, and changes in gut status are closely related to obesity. However, how gut microbes contribute to obesity in children remains unclear. In our study, we performed shotgun metagenomic sequencing of feces from 23 obese children, 8 overweight children and 22 control children in Chengdu, Sichuan, China. RESULTS: We observed a distinct difference in the gut microbiome of obese children and that of controls. Compared with the controls, bacterial pathogen Campylobacter rectus was significantly more abundant in obese children. In addition, functional annotation of microbial genes revealed that there might be gut inflammation in obese children. The guts of overweight children might belong to the transition state between obese and control children due to a gradient in relative abundance of differentially abundant species. Finally, we compared the gut metagenomes of obese Chinese children and obese Mexican children and found that Trichuris trichiura was significantly more abundant in the guts of obese Mexican children. CONCLUSIONS: Our results contribute to understanding the changes in the species and function of intestinal microbes in obese Chinese children.


Assuntos
Microbioma Gastrointestinal , Obesidade Infantil , Humanos , Criança , Microbioma Gastrointestinal/genética , Metagenoma , Obesidade Infantil/genética , População do Leste Asiático , Sobrepeso , Fezes/microbiologia
7.
Stroke ; 53(11): 3446-3454, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35862196

RESUMO

BACKGROUND: Imaging features derived from T1-weighted (T1w) images texture analysis were shown to be potential markers of poststroke cognitive impairment, with better sensitivity than atrophy measurement. However, in magnetic resonance images, the signal distribution is subject to variations and can limit transferability of the method between centers. This study examined the reliability of texture features against imaging settings using data from different centers. METHODS: Data were collected from 327 patients within the Stroke and Cognition Consortium from centers in France, Germany, Australia, and the United Kingdom. T1w images were preprocessed to normalize the signal intensities and then texture features, including first- and second-order statistics, were measured in the hippocampus and the entorhinal cortex. Differences between the data led to the use of 2 methods of analysis. First, a machine learning modeling, using random forest, was used to build a poststroke cognitive impairment prediction model using one dataset and this was validated on another dataset as external unseen data. Second, the predictive ability of the texture features was examined in the 2 remaining datasets by ANCOVA with false discovery rate correction for multiple comparisons. RESULTS: The prediction model had a mean accuracy of 90% for individual classification of patients in the learning base while for the validation base it was ≈ 77%. ANCOVA showed significant differences, in all datasets, for the kurtosis and inverse difference moment texture features when measured in patients with cognitive impairment and those without. CONCLUSIONS: These results suggest that texture features obtained from routine clinical MR images are robust early predictors of poststroke cognitive impairment and can be combined with other demographic and clinical predictors to build an accurate prediction model.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
8.
Neuroimage ; 261: 119528, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914668

RESUMO

Cerebral small vessel disease (CSVD) is a major vascular contributor to cognitive impairment in ageing, including dementias. Imaging remains the most promising method for in vivo studies of CSVD. To replace the subjective and laborious visual rating approaches, emerging studies have applied state-of-the-art artificial intelligence to extract imaging biomarkers of CSVD from MRI scans. We aimed to summarise published computer-aided methods for the examination of three imaging biomarkers of CSVD, namely cerebral microbleeds (CMB), dilated perivascular spaces (PVS), and lacunes of presumed vascular origin. Seventy classical image processing, classical machine learning, and deep learning studies were identified. Transfer learning and weak supervision techniques have been applied to accommodate the limitations in the training data. While good performance metrics were achieved in local datasets, there have not been generalisable pipelines validated in different research and/or clinical cohorts. Future studies could consider pooling data from multiple sources to increase data size and diversity, and evaluating performance using both image processing metrics and associations with clinical measures.


Assuntos
Inteligência Artificial , Doenças de Pequenos Vasos Cerebrais , Biomarcadores , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Computadores , Humanos , Imageamento por Ressonância Magnética/métodos
9.
Hum Brain Mapp ; 43(3): 929-939, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704337

RESUMO

White matter hyperintensities (WMHs) represent the most common neuroimaging marker of cerebral small vessel disease (CSVD). The volume and location of WMHs are important clinical measures. We present a pipeline using deep fully convolutional network and ensemble models, combining U-Net, SE-Net, and multi-scale features, to automatically segment WMHs and estimate their volumes and locations. We evaluated our method in two datasets: a clinical routine dataset comprising 60 patients (selected from Chinese National Stroke Registry, CNSR) and a research dataset composed of 60 patients (selected from MICCAI WMH Challenge, MWC). The performance of our pipeline was compared with four freely available methods: LGA, LPA, UBO detector, and U-Net, in terms of a variety of metrics. Additionally, to access the model generalization ability, another research dataset comprising 40 patients (from Older Australian Twins Study and Sydney Memory and Aging Study, OSM), was selected and tested. The pipeline achieved the best performance in both research dataset and the clinical routine dataset with DSC being significantly higher than other methods (p < .001), reaching .833 and .783, respectively. The results of model generalization ability showed that the model trained on the research dataset (DSC = 0.736) performed higher than that trained on the clinical dataset (DSC = 0.622). Our method outperformed widely used pipelines in WMHs segmentation. This system could generate both image and text outputs for whole brain, lobar and anatomical automatic labeling WMHs. Additionally, software and models of our method are made publicly available at https://www.nitrc.org/projects/what_v1.


Assuntos
Leucoaraiose/diagnóstico por imagem , Leucoaraiose/patologia , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem/métodos , Idoso , Conjuntos de Dados como Assunto , Humanos , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas
10.
J Neurol Neurosurg Psychiatry ; 93(3): 303-308, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921119

RESUMO

OBJECTIVE: To determine the proportional genetic contribution to the variability of cerebral ß-amyloid load in older adults using the classic twin design. METHODS: Participants (n=206) comprising 61 monozygotic (MZ) twin pairs (68 (55.74%) females; mean age (SD): 71.98 (6.43) years), and 42 dizygotic (DZ) twin pairs (56 (66.67%) females; mean age: 71.14 (5.15) years) were drawn from the Older Australian Twins Study. Participants underwent detailed clinical and neuropsychological evaluations, as well as MRI, diffusion tensor imaging (DTI) and amyloid PET scans. Fifty-eight participants (17 MZ pairs, 12 DZ pairs) had PET scans with 11Carbon-Pittsburgh Compound B, and 148 participants (44 MZ pairs, 30 DZ pairs) with 18Fluorine-NAV4694. Cortical amyloid burden was quantified using the centiloid scale globally, as well as the standardised uptake value ratio (SUVR) globally and in specific brain regions. Small vessel disease (SVD) was quantified using total white matter hyperintensity volume on MRI, and peak width of skeletonised mean diffusivity on DTI. Heritability (h2) and genetic correlations were measured with structural equation modelling under the best fit model, controlling for age, sex, tracer and scanner. RESULTS: The heritability of global amyloid burden was moderate (0.41 using SUVR; 0.52 using the centiloid scale) and ranged from 0.20 to 0.54 across different brain regions. There were no significant genetic or environmental correlations between global amyloid burden and markers of SVD. CONCLUSION: Amyloid deposition, the hallmark early feature of Alzheimer's disease, is under moderate genetic influence, suggesting a major environmental contribution that may be amenable to intervention.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Encéfalo/diagnóstico por imagem , Idoso , Doença de Alzheimer/diagnóstico por imagem , Austrália , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
11.
Mol Psychiatry ; 26(8): 3884-3895, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31811260

RESUMO

DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.


Assuntos
Metilação de DNA , Epigenoma , Ilhas de CpG , Metilação de DNA/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla , Humanos
12.
Aging Ment Health ; 26(12): 2503-2510, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569854

RESUMO

OBJECTIVES: Understanding the relationship between white matter hyperintensities (WMHs) and cognitive and physical decline in people with dementia will assist in determining potential treatment strategies. Currently there is conflicting evidence describing the association between WMHs and cognitive decline and, WMHs association with declines in objective measures of physical function have not been examined. We examined the relationship between baseline WMH volume and physical/cognitive decline over one-year in older people with dementia. METHODS: Twenty-six community-dwelling older people with dementia (mean age = 81 ± 8 years; 35% female) were assessed at baseline and follow-up (one-year) using the Addenbrooke's Cognitive Examination-Revised (including verbal fluency), Trail Making Test A, the Physiological Profile Assessment (PPA), timed-up-and-go (TUG) and gait speed. WMH volumes were quantified using a fully automated segmentation toolbox, UBO Detector. RESULTS: In analyses adjusted for baseline performance, higher baseline WMH volume was associated with decline in executive function (verbal fluency), sensorimotor function (PPA) and mobility (TUG). Executive function (semantic/category fluency) was the only domain association that withstood adjustment for age, and additionally hippocampal volume. CONCLUSIONS: In unadjusted analyses, WMH volume was associated with one-year declines in cognitive and physical function in older people with dementia. The association with executive function decline withstood adjustment for age. More research is needed to confirm these findings and explore whether vascular risk reduction strategies can reduce WMH volume and associated cognitive and physical impairments in this group.


Assuntos
Disfunção Cognitiva , Demência , Substância Branca , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Substância Branca/diagnóstico por imagem , Estudos Longitudinais , Encéfalo , Imageamento por Ressonância Magnética , Cognição
13.
Neuroimage ; 229: 117740, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33460796

RESUMO

The relationships between aging and brain morphology have been reported in many previous structural brain studies. However, the trajectories of successful brain aging in the extremely old remain underexplored. In the limited research on the oldest old, covering individuals aged 85 years and older, there are very few studies that have focused on the cortical morphology, especially cortical sulcal features. In this paper, we measured sulcal width and depth as well as cortical thickness from T1-weighted scans of 290 nondemented community-dwelling participants aged between 76 and 103 years. We divided the participants into young old (between 76 and 84; mean = 80.35±2.44; male/female = 76/88) and oldest old (between 85 and 103; mean = 91.74±5.11; male/female = 60/66) groups. The results showed that most of the examined sulci significantly widened with increased age and that the rates of sulcal widening were lower in the oldest old. The spatial pattern of the cortical thinning partly corresponded with that of sulcal widening. Compared to females, males had significantly wider sulci, especially in the oldest old. This study builds a foundation for future investigations of neurocognitive disorders and neurodegenerative diseases in the oldest old, including centenarians.


Assuntos
Envelhecimento/patologia , Córtex Cerebral/diagnóstico por imagem , Demência , Vida Independente/tendências , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Córtex Cerebral/fisiologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Fatores de Tempo
14.
Neuroimage ; 240: 118381, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252528

RESUMO

Diffusion weighted imaging (DWI) is a widely recognized neuroimaging technique to evaluate the microstructure of brain white matter. The objective of this study is to establish an improved automated DWI marker for estimating white matter integrity and investigating ageing related cognitive decline. The concept of Wasserstein distance was introduced to help establish a new measure: difference in distribution functions (DDF), which captures the difference of reshaping one's mean diffusivity (MD) distribution to a reference MD distribution. This new DWI measure was developed using a population-based cohort (n=19,369) from the UK Biobank. Validation was conducted using the data drawn from two independent cohorts: the Sydney Memory and Ageing Study, a community-dwelling sample (n=402), and the Renji Cerebral Small Vessel Disease Cohort Study (RCCS), which consisted of cerebral small vessel disease (CSVD) patients (n=171) and cognitively normal controls (NC) (n=43). DDF was associated with age across all three samples and better explained the variance of changes than other established DWI measures, such as fractional anisotropy, mean diffusivity and peak width of skeletonized mean diffusivity (PSMD). Significant correlations between DDF and cognition were found in the UK Biobank cohort and the MAS cohort. Binary logistic analysis and receiver operator characteristic curve analysis of RCCS demonstrated that DDF had higher sensitivity in distinguishing CSVD patients from NC than the other DWI measures. To demonstrate the flexibility of DDF, we calculated regional DDF which also showed significant correlation with age and cognition. DDF can be used as a marker for monitoring the white matter microstructural changes and ageing related cognitive decline in the elderly.


Assuntos
Envelhecimento/fisiologia , Bases de Dados Factuais , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cognição/fisiologia , Estudos de Coortes , Estudos Transversais , Bases de Dados Factuais/tendências , Imagem de Difusão por Ressonância Magnética/tendências , Feminino , Humanos , Masculino , Reino Unido/epidemiologia
15.
Hum Brain Mapp ; 42(16): 5397-5408, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34412149

RESUMO

White matter abnormalities represent early neuropathological events in neurodegenerative diseases such as Alzheimer's disease (AD), investigating these white matter alterations would likely provide valuable insights into pathological changes over the course of AD. Using a novel mathematical framework called "Director Field Analysis" (DFA), we investigated the geometric microstructural properties (i.e., splay, bend, twist, and total distortion) in the orientation of white matter fibers in AD, amnestic mild cognitive impairment (aMCI), and cognitively normal (CN) individuals from the Alzheimer's Disease Neuroimaging Initiative 2 database. Results revealed that AD patients had extensive orientational changes in the bilateral anterior thalamic radiation, corticospinal tract, inferior and superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and uncinate fasciculus in comparison with CN. We postulate that these orientational changes of white matter fibers may be partially caused by the expansion of lateral ventricle, white matter atrophy, and gray matter atrophy in AD. In contrast, aMCI individuals showed subtle orientational changes in the left inferior longitudinal fasciculus and right uncinate fasciculus, which showed a significant association with the cognitive performance, suggesting that these regions may be preferential vulnerable to breakdown by neurodegenerative brain disorders, thereby resulting in the patients' cognitive impairment. To our knowledge, this article is the first to examine geometric microstructural changes in the orientation of white matter fibers in AD and aMCI. Our findings demonstrate that the orientational information of white matter fibers could provide novel insight into the underlying biological and pathological changes in AD and aMCI.


Assuntos
Doença de Alzheimer/patologia , Amnésia/patologia , Disfunção Cognitiva/patologia , Imagem de Tensor de Difusão , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Amnésia/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Masculino , Fibras Nervosas Mielinizadas/patologia , Substância Branca/diagnóstico por imagem
16.
Cereb Cortex ; 30(2): 575-586, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31240317

RESUMO

Exposures to life stressors accumulate across the lifespan, with possible impact on brain health. Little is known, however, about the mechanisms mediating age-related changes in brain structure. We use a lifespan sample of participants (n = 21 251; 4-97 years) to investigate the relationship between the thickness of cerebral cortex and the expression of the glucocorticoid- and the mineralocorticoid-receptor genes (NR3C1 and NR3C2, respectively), obtained from the Allen Human Brain Atlas. In all participants, cortical thickness correlated negatively with the expression of both NR3C1 and NR3C2 across 34 cortical regions. The magnitude of this correlation varied across the lifespan. From childhood through early adulthood, the profile similarity (between NR3C1/NR3C2 expression and thickness) increased with age. Conversely, both profile similarities decreased with age in late life. These variations do not reflect age-related changes in NR3C1 and NR3C2 expression, as observed in 5 databases of gene expression in the human cerebral cortex (502 donors). Based on the co-expression of NR3C1 (and NR3C2) with genes specific to neural cell types, we determine the potential involvement of microglia, astrocytes, and CA1 pyramidal cells in mediating the relationship between corticosteroid exposure and cortical thickness. Therefore, corticosteroids may influence brain structure to a variable degree throughout life.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Cereb Cortex ; 30(7): 4121-4139, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198502

RESUMO

We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade-albeit in a very limited manner-to behaviors as complex as the choice of one's occupation.


Assuntos
Aptidão/fisiologia , Escolha da Profissão , Córtex Cerebral/crescimento & desenvolvimento , Percepção de Forma/genética , Córtex Visual/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Espessura Cortical do Cérebro , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Análise de Componente Principal , Proteínas de Ligação a RNA/genética , Transcriptoma , Adulto Jovem , Proteínas rho de Ligação ao GTP/genética , Proteínas tau/genética
18.
Stroke ; 51(7): 2111-2121, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517579

RESUMO

BACKGROUND AND PURPOSE: Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings. METHODS: Participants were aged 45 years and older, free of stroke and dementia. We conducted genome-wide association analyses of PVWMH and DWMH in 26,654 participants from CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), ENIGMA (Enhancing Neuro-Imaging Genetics Through Meta-Analysis), and the UKB (UK Biobank). Regional correlations were investigated using the genome-wide association analyses -pairwise method. Cross-trait genetic correlations between PVWMH, DWMH, stroke, and dementia were estimated using LDSC. RESULTS: In the discovery and replication analysis, for PVWMH only, we found associations on chromosomes 2 (NBEAL), 10q23.1 (TSPAN14/FAM231A), and 10q24.33 (SH3PXD2A). In the much larger combined meta-analysis of all cohorts, we identified ten significant regions for PVWMH: chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 16, and 17q23.1. New loci of interest include 7q36.1 (NOS3) and 16q24.2. In both the discovery/replication and combined analysis, we found genome-wide significant associations for the 17q25.1 locus for both DWMH and PVWMH. Using gene-based association analysis, 19 genes across all regions were identified for PVWMH only, including the new genes: CALCRL (2q32.1), KLHL24 (3q27.1), VCAN (5q27.1), and POLR2F (22q13.1). Thirteen genes in the 17q25.1 locus were significant for both phenotypes. More extensive genetic correlations were observed for PVWMH with small vessel ischemic stroke. There were no associations with dementia for either phenotype. CONCLUSIONS: Our study confirms these phenotypes have distinct and also shared genetic architectures. Genetic analyses indicated PVWMH was more associated with ischemic stroke whilst DWMH loci were implicated in vascular, astrocyte, and neuronal function. Our study confirms these phenotypes are distinct neuroimaging classifications and identifies new candidate genes associated with PVWMH only.


Assuntos
Encéfalo/patologia , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/patologia , Predisposição Genética para Doença/genética , Substância Branca/patologia , Idoso , Encéfalo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
19.
Neuroimage ; 215: 116855, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32302764

RESUMO

Centenarians without dementia can be considered as a model of successful ageing and resistance against age-related cognitive decline. Is there something special about their brain functional connectivity that helps them preserve cognitive function into the 11th decade of life? In a cohort of 57 dementia-free near-centenarians and centenarians (95-103 years old) and 66 cognitively unimpaired younger participants (76-79 years old), we aimed to investigate brain functional characteristics in the extreme age range using resting-state functional MRI. Using group-level independent component analysis and dual regression, results showed group differences in the functional connectivity of seven group-level independent component (IC) templates, after accounting for sex, education years, and grey matter volume, and correcting for multiple testing at family-wise error rate of 0.05. After Bonferroni correction for testing 30 IC templates, near-centenarians and centenarians showed stronger functional connectivity between right frontoparietal control network (FPCN) and left inferior frontal gyrus (Bonferroni-corrected p â€‹= â€‹0.024), a core region of the left FPCN. The investigation of between-IC functional connectivity confirmed the voxel-wise result by showing stronger functional connectivity between bilateral FPCNs in near-centenarians and centenarians compared to young-old controls. In addition, near-centenarians and centenarians had weaker functional connectivity between default mode network and fronto-temporo-parietal network compared to young-old controls. In near-centenarians and centenarians, stronger functional connectivity between bilateral FPCNs was associated with better cognitive performance in the visuospatial domain. The current study highlights the key role of bilateral FPCN connectivity in the reserve capacity against age-related cognitive decline.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Demência , Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Estudos de Coortes , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Lobo Parietal/diagnóstico por imagem
20.
Neuroimage ; 174: 539-549, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29578029

RESUMO

We present 'UBO Detector', a cluster-based, fully automated pipeline for extracting and calculating variables for regions of white matter hyperintensities (WMH) (available for download at https://cheba.unsw.edu.au/group/neuroimaging-pipeline). It takes T1-weighted and fluid attenuated inversion recovery (FLAIR) scans as input, and SPM12 and FSL functions are utilised for pre-processing. The candidate clusters are then generated by FMRIB's Automated Segmentation Tool (FAST). A supervised machine learning algorithm, k-nearest neighbor (k-NN), is applied to determine whether the candidate clusters are WMH or non-WMH. UBO Detector generates both image and text (volumes and the number of WMH clusters) outputs for whole brain, periventricular, deep, and lobar WMH, as well as WMH in arterial territories. The computation time for each brain is approximately 15 min. We validated the performance of UBO Detector by showing a) high segmentation (similarity index (SI) = 0.848) and volumetric (intraclass correlation coefficient (ICC) = 0.985) agreement between the UBO Detector-derived and manually traced WMH; b) highly correlated (r2 > 0.9) and a steady increase of WMH volumes over time; and c) significant associations of periventricular (t = 22.591, p < 0.001) and deep (t = 14.523, p < 0.001) WMH volumes generated by UBO Detector with Fazekas rating scores. With parallel computing enabled in UBO Detector, the processing can take advantage of multi-core CPU's that are commonly available on workstations. In conclusion, UBO Detector is a reliable, efficient and fully automated WMH segmentation pipeline.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Idoso , Algoritmos , Análise por Conglomerados , Estudos Transversais , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Masculino , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA