Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Surg Oncol ; 30(2): 1169-1181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336733

RESUMO

BACKGROUND: To cure advanced hypopharyngeal squamous cell carcinoma (HPSCC), primary operation followed by adjuvant (chemo-)radiotherapy (OP-CRT) or definitive chemoradiation (CCRT) are the two primary options. This study aimed to compare the failure patterns and long-term survival outcomes of HPSCC patients treated with these two strategies. PATIENTS AND METHODS: From 2007 to 2015, 198 pathologically confirmed HPSCC patients receiving either OP-CRT or CCRT were retrospectively reviewed. Failure patterns and survival outcomes stratified by the 7th American Joint Committee on Cancer staging system and treatment modalities were compared. RESULTS: One hundred and eighty-nine patients (95.4%) were stage III/IV and 62 patients (31.3%) received OP-CRT. Median follow-up duration was 4.9 years. Compared with CCRT, OP-CRT provided better 3-year local relapse-free survival for T3 (93 vs 48%, p < 0.0001), T4a (88 vs 37%, p = 0.0005) and better 3-year regional relapse-free survival for N2b+2c (93 vs 60%, p < 0.0001). Of note, for stage IVA subjects, OP-CRT provided better 3-year loco-regional relapse-free survival (85 vs 37%, p < 0.0001), marginal poor 3-year distant metastasis-free survival (62 vs 79%, p = 0.06), but comparable 3-year OS (52 vs 44%, p = 0.37) and 5-year OS (44 vs 31%, p = 0.15) compared with CCRT. CONCLUSIONS: For patients with advanced HPSCC, although OP-CRT and CCRT provided similar overall survival, failure patterns were distinct. OP-CRT provided better loco-regional control but was more likely to encounter distant metastases than CCRT. The detailed analysis of failure patterns will pave the way to improve this devastating disease.


Assuntos
Neoplasias Hipofaríngeas , Humanos , Estudos Retrospectivos , Neoplasias Hipofaríngeas/cirurgia , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/terapia , Quimiorradioterapia
2.
J Biomed Sci ; 30(1): 39, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308977

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PDAC) is well known for its rapid distant metastasis and local destructive behavior. Loss of Krüppel-like factor 10 (KLF10) contributes to distant migration of PDAC. The role of KLF10 in modulating tumorigenesis and stem cell phenotypes of PDAC is unclear. METHODS: Additional depletion of KLF10 in KC (LSL: KrasG12D; Pdx1-Cre) mice, a spontaneous murine PDAC model, was established to evaluate tumorigenesis. Tumor specimens of PDAC patients were immune-stained of KLF10 to correlate with local recurrence after curative resection. Conditional overexpressing KLF10 in MiaPaCa and stably depleting KLF10 in Panc-1 (Panc-1-pLKO-shKLF10) cells were established for evaluating sphere formation, stem cell markers expression and tumor growth. The signal pathways modulated by KLF10 for PDAC stem cell phenotypes were disclosed by microarray analysis and validated by western blot, qRT-PCR, luciferase reporter assay. Candidate targets to reverse PDAC tumor growth were demonstrated in murine model. RESULTS: KLF10, deficient in two-thirds of 105 patients with resected pancreatic PDAC, was associated with rapid local recurrence and large tumor size. Additional KLF10 depletion in KC mice accelerated progression from pancreatic intraepithelial neoplasia to PDAC. Increased sphere formation, expression of stem cell markers, and tumor growth were observed in Panc-1-pLKO-shKLF10 compared with vector control. Genetically or pharmacologically overexpression of KLF10 reversed the stem cell phenotypes induced by KLF10 depletion. Ingenuity pathway analysis and gene set enrichment analysis showed that Notch signaling molecules, including Notch receptors 3 and 4, were over-expressed in Panc-1-pLKO-shKLF10. KLF10 transcriptionally suppressed Notch-3 and -4 by competing with E74-like ETS transcription factor 3, a positive regulator, for promoter binding. Downregulation of Notch signaling, either genetically or pharmacologically, ameliorated the stem cell phenotypes of Panc-1-pLKO-shKLF10. The combination of metformin, which upregulated KLF10 expression via phosphorylating AMPK, and evodiamine, a non-toxic Notch-3 methylation stimulator, delayed tumor growth of PDAC with KLF10 deficiency in mice without prominent toxicity. CONCLUSIONS: These results demonstrated a novel signaling pathway by which KLF10 modulates stem cell phenotypes in PDAC through transcriptionally regulating Notch signaling pathway. The elevation of KLF10 and suppression of Notch signaling may jointly reduce PDAC tumorigenesis and malignant progression.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Camundongos , Receptores Notch , Células-Tronco , Carcinogênese , Fatores de Transcrição , Transformação Celular Neoplásica , Fatores de Transcrição Kruppel-Like , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563222

RESUMO

Oral squamous cell carcinoma (OSCC) carcinogenesis involves heterogeneous tumor cells, and the tumor microenvironment (TME) is highly complex with many different cell types. Cancer cell-TME interactions are crucial in OSCC progression. Candida albicans (C. albicans)-frequently pre-sent in the oral potentially malignant disorder (OPMD) lesions and OSCC tissues-promotes malignant transformation. The aim of the study is to verify the mechanisms underlying OSCC car-cinogenesis with C. albicans infection and identify the biomarker for the early detection of OSCC and as the treatment target. The single-cell RNA sequencing analysis (scRNA-seq) was performed to explore the cell subtypes in normal oral mucosa, OPMD, and OSCC tissues. The cell composi-tion changes and oncogenic mechanisms underlying OSCC carcinogenesis with C. albicans infec-tion were investigated. Gene Set Variation Analysis (GSVA) was used to survey the mechanisms underlying OSCC carcinogenesis with and without C. albicans infection. The results revealed spe-cific cell clusters contributing to OSCC carcinogenesis with and without C. albicans infection. The major mechanisms involved in OSCC carcinogenesis without C. albicans infection are the IL2/STAT5, TNFα/NFκB, and TGFß signaling pathways, whereas those involved in OSCC carcinogenesis with C. albicans infection are the KRAS signaling pathway and E2F target down-stream genes. Finally, stratifin (SFN) was validated to be a specific biomarker of OSCC with C. albicans infection. Thus, the detailed mechanism underlying OSCC carcinogenesis with C. albicans infection was determined and identified the treatment biomarker with potential precision medicine applications.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Biomarcadores , Candida albicans/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Bucais/patologia , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral/genética
4.
BMC Oral Health ; 22(1): 165, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524231

RESUMO

BACKGROUND: Morphological evaluation of oral mucosal biopsy is sometimes inconclusive, which may delay the diagnosis and treatment of oral squamous malignancy. Immunohistochemical biomarkers denoting oral squamous malignancy would be clinically helpful in such scenario. METHODS: We first studied the expression patterns of four potential biomarkers (cytokeratin 13, cytokeratin 17, Ki-67 and laminin 5 gamma 2 chain) in an exploratory cohort containing 54 surgical specimens from confirmed oral squamous malignancies. A pattern score was assigned to each specific expression pattern of these four biomarkers. A total score from each specimen was then calculated by summing up the four pattern scores. A cut-off value of total score denoting oral squamous malignancy was then determined. Another 34 oral squamous malignancies that were misdiagnosed as non-malignant lesions on their pre-treatment biopsies were used as a validation cohort to test the clinical utility of this scoring system. RESULTS: In the exploratory cohort, fifty-two (96%) of the 54 confirmed oral squamous malignancies had a total score of 9 and above. In the validation cohort, thirty-one (91%) of the 34 pre-treatment oral biopsy specimens also had a total score of 9 or above, supporting the feasibility of using this scoring system to predict immediate risk of oral squamous malignancy. CONCLUSIONS: Our four-biomarker "oral squamous malignancy scoring system" provides reliable prediction for immediate risk of oral squamous malignancy on pre-treatment oral biopsies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Biomarcadores Tumorais/metabolismo , Biópsia , Carcinoma de Células Escamosas/patologia , Humanos , Mucosa Bucal/patologia , Neoplasias Bucais/patologia
5.
Oncologist ; 25(5): e782-e788, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31852810

RESUMO

BACKGROUND: The discovery of effective therapeutic options for treating metastatic poorly differentiated neuroendocrine carcinoma (NEC) after prior platinum-based chemotherapy remains elusive. This study analyzed the efficacy of TLC388 (Lipotecan) Hydrochloride, a novel camptothecin analog, for pretreated patients with metastatic NEC. METHODS: This single-arm, two-stage, phase II clinical trial was conducted at four community and academic centers in Taiwan. Patients aged 20 years or older with confirmed metastatic NEC and who had received prior systemic therapy with etoposide plus cisplatin were enrolled between July 2015 and May 2018. Patients received 40 mg/m2 of TLC388 intravenously on days 1, 8, and 15 of a 28-day cycle until disease progression or unacceptable toxic effects. Gene mutations were analyzed by next-generation sequencing. RESULTS: Twenty-three patients with a median age of 61 (range, 44-73) years, 18 of whom were men (78%), were enrolled. Patients received a median of 2 (range, 0-6) treatment cycles. Among 20 evaluable patients, 3 patients exhibited stable disease and no patient experienced a complete or partial remission, resulting in a disease control rate of 15%. Median progression-free survival was 1.8 (95% confidence interval [CI], 0.4-15) months, and the median overall survival was 4.3 (95% CI, 1.7-15) months. The most common treatment-related hematologic adverse events at grade 3 or higher were leukopenia (22.7%), anemia (31.8%), and thrombocytopenia (18.2%). The most frequent mutated genes in 35 patients with NEC were ARSA, DPYD, HEXB, BRCA1, HPD, MYBPC3, BBS2, IL7R, HSD17B4, and PRODH. CONCLUSION: TLC388 demonstrates limited antitumor activity in metastatic NEC. ClinicalTrials.gov identifier: NCT02457273. IMPLICATIONS FOR PRACTICE: Poorly differentiated neuroendocrine carcinomas (NECs) are rare and aggressive. Currently, effective therapeutic options for treating metastatic poorly differentiated NECs beyond platinum-based chemotherapy remain elusive. In this single-arm, multicenter, phase II study, 23 patients with NEC were enrolled and received TLC388 (Lipotecan) Hydrochloride, which is a novel camptothecin analog. The results demonstrated the disease control rate of 15%, the median progression-free survival of 1.8 (95% confidence interval [CI], 0.4-15) months, and the median overall survival of 4.3 (95% CI, 1.7-15) months. Most importantly, several novel genetic mutations and pathways were identified. These results offer the opportunity to develop future treatment strategies in this rare cancer.


Assuntos
Camptotecina , Carcinoma Neuroendócrino , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Taiwan
6.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708387

RESUMO

Multipotent human mesenchymal stem cells (MSCs) harbor clinically relevant immunomodulation, and HLA-G, a non-classical MHC class I molecule with highly restricted tissue expression, is one important molecule involved in these processes. Understanding of the natural regulatory mechanisms involved in expression of this elusive molecule has been difficult, with near exclusive reliance on cancer cell lines. We therefore studied the transcriptional control of HLA-G in primary isolated human bone marrow- (BM), human embryonic stem cell-derived (hE-), as well as placenta-derived MSCs (P-MSCs), and found that all 3 types of MSCs express 3 of the 7 HLA-G isoforms at the gene level; however, fibroblasts did not express HLA-G. Protein validation using BM- and P-MSCs demonstrated expression of 2 isoforms including a larger HLA-G-like protein. Interferon-γ (IFN-γ) stimulation upregulated both gene and protein expression in MSCs but not the constitutively expressing JEG-3 cell line. Most interestingly in human MSCs and placental tissue, hypomethylation of CpG islands not only occurs on the HLA-G proximal promoter but also on the gene body as well, a pattern not seen in either of the 2 commonly used choriocarcinoma cell lines which may contribute to the unique HLA-G expression patterns and IFN-γ-responsiveness in MSCs. Our study implicates the importance of using normal cells and tissues for physiologic understanding of tissue-specific transcriptional regulation, and highlight the utility of human MSCs in unraveling the transcriptional regulation of HLA-G for better therapeutic application.


Assuntos
Células da Medula Óssea/metabolismo , Metilação de DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Antígenos HLA-G/metabolismo , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Azacitidina/farmacologia , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Desmetilação/efeitos dos fármacos , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Antígenos HLA-G/genética , Humanos , Interferon gama/farmacologia , Placenta/metabolismo , Gravidez , Regiões Promotoras Genéticas , Isoformas de Proteínas , Espectrometria de Massas em Tandem
7.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142921

RESUMO

Oral carcinogenesis involves the progression of the normal mucosa into potentially malignant disorders and finally into cancer. Tumors are heterogeneous, with different clusters of cells expressing different genes and exhibiting different behaviors. 4-nitroquinoline 1-oxide (4-NQO) and arecoline were used to induce oral cancer in mice, and the main factors for gene expression influencing carcinogenesis were identified through single-cell RNA sequencing analysis. Male C57BL/6J mice were divided into two groups: a control group (receiving normal drinking water) and treatment group (receiving drinking water containing 4-NQO (200 mg/L) and arecoline (500 mg/L)) to induce the malignant development of oral cancer. Mice were sacrificed at 8, 16, 20, and 29 weeks. Except for mice sacrificed at 8 weeks, all mice were treated for 16 weeks and then either sacrificed or given normal drinking water for the remaining weeks. Tongue lesions were excised, and all cells obtained from mice in the 29- and 16-week treatment groups were clustered into 17 groups by using the Louvain algorithm. Cells in subtypes 7 (stem cells) and 9 (keratinocytes) were analyzed through gene set enrichment analysis. Results indicated that their genes were associated with the MYC_targets_v1 pathway, and this finding was confirmed by the presence of cisplatin-resistant nasopharyngeal carcinoma cell lines. These cell subtype biomarkers can be applied for the detection of patients with precancerous lesions, the identification of high-risk populations, and as a treatment target.


Assuntos
Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/patologia , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Arecolina/toxicidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Agonistas Colinérgicos/toxicidade , Modelos Animais de Doenças , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Bucais/induzido quimicamente , Estadiamento de Neoplasias , Lesões Pré-Cancerosas/induzido quimicamente , Proteínas Proto-Oncogênicas c-myc/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia , Neoplasias da Língua/induzido quimicamente
8.
Stem Cells ; 36(6): 903-914, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29396902

RESUMO

Multilineage tissue-source mesenchymal stem cells (MSCs) possess strong immunomodulatory properties and are excellent therapeutic agents, but require constant isolation from donors to combat replicative senescence. The differentiation of human induced pluripotent stem cells (iPSCs) into MSCs offers a renewable source of MSCs; however, reports on their immunomodulatory capacity have been discrepant. Using MSCs differentiated from iPSCs reprogrammed using diverse cell types and protocols, and in comparison to human embryonic stem cell (ESC)-MSCs and bone marrow (BM)-MSCs, we performed transcriptome analyses and assessed for functional immunomodulatory properties. Differentiation of MSCs from iPSCs results in decreased c-Myc expression and its downstream pathway along with a concomitant downregulation in the DNA replication pathway. All four lines of iPSC-MSCs can significantly suppress in vitro activated human peripheral blood mononuclear cell (PBMC) proliferation to a similar degree as ESC-MSCs and BM-MSCs, and modulate CD4 T lymphocyte fate from a type 1 helper T cell (Th1) and IL-17A-expressing (Th17) cell fate to a regulatory T cell (Treg) phenotype. Moreover, iPSC-MSCs significantly suppress cytotoxic CD8 T proliferation, activation, and differentiation into type 1 cytotoxic T (Tc1) and IL-17-expressing CD8 T (Tc17) cells. Coculture of activated PBMCs with human iPSC-MSCs results in an overall shift of secreted cytokine profile from a pro-inflammatory environment to a more immunotolerant milieu. iPSC-MSC immunomodulation was also validated in vivo in a mouse model of induced inflammation. These findings support that iPSC-MSCs possess low oncogenicity and strong immunomodulatory properties regardless of cell-of-origin or reprogramming method and are good potential candidates for therapeutic use. Stem Cells 2018;36:903-914.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Diferenciação Celular , Regulação para Baixo , Humanos , Imunomodulação , Camundongos
9.
Cancer Sci ; 109(11): 3564-3574, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30142696

RESUMO

Androgen receptor (AR), an androgen-activated transcription factor, belongs to the nuclear receptor superfamily. AR plays an important role in the development and progression of prostate cancer (PCa). However, the role of AR in PCa metastasis is not fully understood. To investigate the role of AR in PCa metastasis, we examined AR expression level in primary and metastatic PCa by analyzing gene array data of 378 primary prostate tumors and 120 metastatic prostate tumors from Oncomine, as well as carrying out immunohistochemical (IHC) staining of 56 prostate cancer samples. Expression of mRNA and protein of AR as well as its target gene prostate-specific antigen (PSA) was much higher in metastatic prostate tumors than in primary prostate tumors. Knockdown of AR with siRNA or treating with anti-androgen Casodex reduced migration and invasion ability of C4-2B PCa cells. Knockdown of AR increased protein expression of E-cadherin and AR coregulator KAT5 but reduced expression of epithelial-mesenchymal transition (EMT) marker proteins Slug, Snail, MMP-2, vimentin, and ß-catenin. Knockdown of KAT5 increased migration of C4-2B cells, whereas overexpression of KAT5 suppressed cell migration. KAT5 knockdown rescues the suppressive effect of AR knockdown on migration of C4-2B cells. Gene expression level of AR and KAT5 showed a negative correlation. PCa patients with higher AR expression or lower KAT5 expression correlated with shorter recurrence-free survival. Our study suggested that elevation of AR expression and AR signaling in prostate tumors promotes PCa metastasis by induction of EMT and reduction of KAT5.


Assuntos
Lisina Acetiltransferase 5/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Lisina Acetiltransferase 5/metabolismo , Masculino , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/metabolismo , Análise de Sobrevida
11.
Environ Res ; 162: 261-270, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367177

RESUMO

BACKGROUND: Phthalic acid esters are ubiquitous and antiandrogenic, and may cause systemic effects in humans, particularly with in utero exposure. Epigenetic modification, such as DNA methylation, has been hypothesized to be an important mechanism that mediates certain biological processes and pathogenic effects of in utero phthalate exposure. OBJECTIVE: The aim of this study was to examine the association between genome-wide DNA methylation at birth and prenatal exposure to phthalate. METHODS: We studied 64 infant-mother pairs included in TMICS (Taiwan Maternal and Infant Cohort Study), a long-term follow-up birth cohort from the general population. DNA methylation levels at more than 450,000 CpG sites were measured in cord blood samples using Illumina Infinium HumanMethylation450 BeadChips. The concentrations of three metabolites of di-(2-ethylhexyl) phthalate (DEHP) were measured using liquid chromatography tandem-mass spectrometry (LC-MS/MS) in urine samples collected from the pregnant women during 28-36 weeks gestation. RESULTS: We identified 25 CpG sites whose methylation levels in cord blood were significantly correlated with prenatal DEHP exposure using a false discovery rate (FDR) of 5% (q-value < 0.05). Via gene-set enrichment analysis (GSEA), we also found that there was significant enrichment of genes involved in the androgen response, estrogen response, and spermatogenesis within those genes showing DNA methylation changes in response to exposure. Specifically, PA2G4, HMGCR, and XRCC6 genes were involved in genes in response to androgen. CONCLUSIONS: Phthalate exposure in utero may cause significant alterations in the DNA methylation in cord blood. These changes in DNA methylation might serve as biomarkers of maternal exposure to phthalate in infancy and potential candidates for studying mechanisms via which phthalate may impact on health in later life. Future investigations are warranted.


Assuntos
Metilação de DNA , Dietilexilftalato , Disruptores Endócrinos , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatografia Líquida , Estudos de Coortes , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Recém-Nascido , Autoantígeno Ku/metabolismo , Masculino , Exposição Materna , Ácidos Ftálicos/toxicidade , Gravidez , Proteínas de Ligação a RNA/metabolismo , Taiwan , Espectrometria de Massas em Tandem
12.
Am J Respir Crit Care Med ; 195(5): 663-673, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27669169

RESUMO

RATIONALE: Patients with non-small cell lung cancer (NSCLC) with mutated epidermal growth factor receptor (EGFR) are relatively sensitive to EGFR-tyrosine kinase inhibitor (TKI) treatment and have longer progression-free survival (PFS) when treated with EGFR-TKI compared with platinum-based chemotherapy. However, many patients with advanced NSCLC who have mutated EGFR do not respond to first-line EGFR-TKI treatment and still have shorter PFS. OBJECTIVES: The aim of this study was to identify genetic variants associated with PFS among patients with lung adenocarcinoma who were treated with first-line EGFR-TKIs. METHODS: A genome-wide association study on PFS was performed in never-smoking women diagnosed with lung adenocarcinoma and who were treated with first-line EGFR-TKIs (n = 128). Significant single-nucleotide polymorphisms (SNPs) were selected for follow-up association analysis (n = 198) and for replication assay in another independent cohort (n = 153). MEASUREMENTS AND MAIN RESULTS: We identified SNPs at 4q12 associated with PFS at genome-wide significance (P < 10-8) and with an estimated hazard ratio of more than 4. This association was also replicated in a larger but similar cohort and in an independent NSCLC cohort. Follow-up functional analyses showed that these SNPs were associated with the expression of EGFR, which encodes the TKI target, and with a nearby gene neuromedin-U, which encodes a G protein-coupled receptor ligand known to be involved in the progression of NSCLC. Considering these as possible prognostic biomarkers for the treatment of patients with late-stage lung cancer, we found that these SNPs were not associated with EGFR mutation status or with polymorphism of the Bcl2-interacting mediator of cell death gene. CONCLUSIONS: Genetic variants in 4q12 merit further investigation to assess their potential as pharmacogenomic predictors for and to understand the biology underlying its influence on PFS in patients treated with TKI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Seguimentos , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
13.
Mol Carcinog ; 55(5): 499-513, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25728212

RESUMO

Growth differentiation factor-10 (GDF10), commonly referred as BMP3b, is a member of the transforming growth factor-ß (TGF-ß) superfamily. GDF10/BMP3b has been considered as a tumor suppressor, however, little is known about the molecular mechanism of its roles in tumor suppression in oral cancer. Clinical significance of GDF10 downregulation in oral squamous cell carcinoma (OSCC) was evaluated using three independent cohorts of OSCC patients. The molecular mechanisms of GDF10 in the suppression of cell survival, cell migration/invasion and epithelial-mesenchymal transition (EMT) were investigated by using oral cancer cell lines. The present study shows that GDF10 is downregulated during oral carcinogenesis, and GDF10 expression is also an independent risk factor for overall survival of OSCC patients. Overexpression of GDF10 attenuates cell proliferation, transformation, migration/invasion, and EMT. GDF10-inhibited EMT is mediated by ERK signaling but not by typical TGF-ß signaling. In addition, overexpression of GDF10 promotes DNA damage-induced apoptosis and sensitizes the response to all-trans retinoic acid (ATRA) and camptothecin (CPT). Intriguingly, the expression of GDF10 is induced by type III TGF-ß receptor (TGFBR3) through TGF-ß-SMAD2/3 signaling. Our findings suggest that TGFBR3 is an upstream activator of GDF10 expression and they share the same signaling to inhibit EMT and migration/invasion. These results support that GDF10 acts as a hinge to collaborate with TGFBR3 in the transition of EMT-MET program. Taken together, we illustrated the clinical significance and the molecular mechanisms of tumor-suppressive GDF10 in OSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Fator 10 de Diferenciação de Crescimento/metabolismo , Neoplasias Bucais/patologia , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Fator 10 de Diferenciação de Crescimento/genética , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Prognóstico , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Análise de Sobrevida
14.
Biochim Biophys Acta ; 1842(7): 1080-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24662304

RESUMO

The nonsense mutations of the hepatitis B virus (HBV) surface (S) gene have been reported to have oncogenic potential. We have previously identified several transforming nonsense mutations of the HBV S gene from hepatocarcinoma (HCC) patients. Among them, the sW182* mutant (the stop codon for tryptophan 182) showed the most potent oncogenicity in a mouse xenograft model using stably transfected mouse fibroblast cells. This study is aimed at understanding the molecular mechanisms leading to the oncogenic activity of the sW182* mutant. A gene expression microarray in combination with gene set enrichment analysis (GSEA) revealed differentially expressed gene sets in the sW182* cells, including those related to cell-cycle regulation, deoxyribonucleic acid repair, and genome instability. Of the differentially expressed genes, the transforming growth factor-ß-induced (TGFBI) gene was further validated to be dysregulated in the sW182* cells. This dysregulation was accompanied by hypermethylation of the TGFBI promoter. The level of cyclin D1, a negatively regulated TGFBI target, was highly elevated in the sW182* mutant cells, which is consistent with the potent oncogenicity. Furthermore, frequent abnormal mitosis and multinucleation were observed in the mutant cells. Exogenous expression of TGFBI alleviated the oncogenic activity of the sW182* cells. In human HBV-related HCC cancerous tissue, expression of TGFBI was downregulated in 25 of the 55 (45%) patients examined, suggesting that TGFBI dysregulation could occur in HBV-related HCC development in some cases. These results suggest that dysregulation of TGFBI is involved in the oncogenic activity of the sW182* mutant of the hepatitis B virus S gene.


Assuntos
Carcinogênese/genética , Códon sem Sentido , Proteínas da Matriz Extracelular/genética , Antígenos de Superfície da Hepatite B/genética , Fator de Crescimento Transformador beta/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Ciclo Celular/genética , Linhagem Celular , Ciclina D1/genética , Metilação de DNA , Reparo do DNA/genética , Regulação para Baixo , Expressão Gênica , Instabilidade Genômica , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Camundongos , Camundongos Nus , Células NIH 3T3 , Regiões Promotoras Genéticas
15.
Ann Surg Oncol ; 22(3): 889-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25212833

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is defined by reduced expression of the estrogen receptor, progesterone receptor, and HER2. TNBC is an especially aggressive group of breast cancers with poor prognosis. There are currently no validated molecular targets to effectively treat this disease. Thus, it is necessary to identify effective molecular targets and therapeutic strategies for TNBC patients. METHODS: The expression of HSPA5 in patients with breast cancer was examined by immunohistochemistry. The association of HSPA5 expression with tumor grade and metastatic events in TNBC patients was analyzed using the Oncomine database. The knockdown and overexpression of HSPA5 protein were performed to investigate the effects on E1A-suppressed cell migration/invasion of TNBC using in vitro transwell assays and tumor growth/experimental metastasis studies in animal models. RESULTS: The expression of HSPA5 was positively correlated with high-grade tumors, metastatic events, and poor overall survival in breast cancer patients with TNBC. E1A-inhibited HSPA5 expression suppressed cell migration/invasive ability of TNBC cell lines. Moreover, E1A significantly abolished lung metastases from breast cancer cells by inhibiting HSPA5 expression in a xenograft tumor model. CONCLUSIONS: The overexpression of HSPA5 is critical for high-risk metastasis of breast cancer and TNBC. The results of our study suggest that HSPA5 may be a crucial mediator of E1A-suppressed metastatic ability of breast cancer cells. Thus, E1A may be a potential target for diagnosis and individualized treatment in clinical practice.


Assuntos
Proteínas E1A de Adenovirus/genética , Movimento Celular , Proliferação de Células , Proteínas de Choque Térmico/antagonistas & inibidores , Neoplasias Pulmonares/prevenção & controle , Neoplasias de Mama Triplo Negativas/prevenção & controle , Animais , Apoptose , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Camundongos , Camundongos SCID , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Cancer ; 135(4): 809-19, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24477565

RESUMO

SOX2 is a transcription factor essential for self-renewal and pluripotency of embryonic stem cells. Recently, SOX2 was found overexpressed in the majority of the lung squamous cell carcinoma (SQC), in which it acts as a lineage-survival oncogene. However, downstream targets/pathways of SOX2 in lung SQC cells remain to be identified. Here, we show that BMP4 is a downstream target of SOX2 in lung SQC. We found that SOX2-silencing-mediated inhibition of cell growth was accompanied by upregulation of BMP4 mRNA and its protein expression. Meta-analysis with 293 samples and qRT-PCR validation with 73 clinical samples revealed an inversely correlated relationship between levels of SOX2 and BMP4 mRNA, and significantly lower mRNA levels in tumor than in adjacent normal tissues. This was corroborated by immunohistochemistry analysis of 35 lung SQC samples showing lower BMP4 protein expression in tumor tissues. Cell-based experiments including siRNA transfection, growth assay and flow cytometry assay, further combined with a xenograft tumor model in mice, revealed that reactivation of BMP4 signaling could partially account for growth inhibition and cell cycle arrest in lung SQC cells upon silencing SOX2. Finally, chromatin immunoprecipitation analysis and luciferase reporter assay revealed that SOX2 could negatively regulate BMP4 promoter activity, possibly through binding to the promoter located in the first intron region of BMP4. Collectively, our findings suggest that BMP4 could act as a tumor suppressor and its downregulation by elevated SOX2 resulting in enhanced growth of lung SQC cells.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Bases de Dados Genéticas , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Transdução de Sinais
17.
Gastroenterology ; 145(5): 1110-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23896173

RESUMO

BACKGROUND & AIMS: Many patients with pancreatic ductal adenocarcinoma (PDAC) develop recurrent or metastatic diseases after surgery, so it is important to identify those most likely to benefit from aggressive therapy. Disruption of tissue microarchitecture is an early step in pancreatic tumorigenesis and a parameter used in pathology grading of glandular tumors. We investigated whether changes in gene expression during pancreatic epithelial morphogenesis were associated with outcomes of patients with PDAC after surgery. METHODS: We generated architectures of human pancreatic duct epithelial cells in a 3-dimensional basement membrane matrix. We identified gene expression profiles of the cells during different stages of tubular morphogenesis (tubulogenesis) and of PANC-1 cells during spheroid formation. Differential expression of genes was confirmed by immunoblot analysis. We compared the gene expression profile associated with pancreatic epithelial tubulogenesis with that of PDAC samples from 27 patients, as well as with their outcomes after surgery. RESULTS: We identified a gene expression profile associated with tubulogenesis that resembled the profile of human pancreatic tissue with differentiated morphology and exocrine function. Patients with PDACs with this profile fared well after surgery. Based on this profile, we established a 6-28 gene tubulogenesis-specific signature that accurately determined the prognosis of independent cohorts of patients with PDAC (total n = 128; accuracy = 81.2%-95.0%). One gene, ASPM, was down-regulated during tubulogenesis but up-regulated in human PDAC cell lines and tumor samples; up-regulation correlated with patient outcomes (Cox regression P = .0028). Bioinformatic, genetic, biochemical, functional, and clinical correlative studies showed that ASPM promotes aggressiveness of PDAC by maintaining Wnt-ß-catenin signaling and stem cell features of PDAC cells. CONCLUSIONS: We identified a gene expression profile associated with pancreatic epithelial tubulogenesis and a tissue architecture-specific signature of PDAC cells that is associated with patient outcomes after surgery.


Assuntos
Carcinoma Ductal Pancreático/patologia , Diferenciação Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Proteínas do Tecido Nervoso/fisiologia , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Transcriptoma/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/fisiologia , Carcinoma Ductal Pancreático/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Modelos Animais de Doenças , Epitélio/patologia , Seguimentos , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/genética , Prognóstico , Estudos Retrospectivos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia
18.
Am J Pathol ; 182(2): 363-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23219426

RESUMO

Histopathological classification of human prostate cancer (PCA) relies on the morphological assessment of tissue specimens but has limited prognostic value. To address this deficiency, we performed comparative transcriptome analysis of human prostatic acini generated in a three-dimensional basement membrane that recapitulates the differentiated morphological characteristics and gene expression profile of a human prostate glandular epithelial tissue. We then applied an acinar morphogenesis-specific gene profile to two independent cohorts of patients with PCA (total n = 79) and found that those with tumors expressing this profile, which we designated acini-like tumors, had a significantly lower risk of postoperative relapse compared with those tumors with a lower correlation (hazard ratio, 0.078; log-rank test P = 0.009). Multivariate analyses showed superior prognostic prediction performance using this classification system compared with clinical criteria and Gleason scores. We prioritized the genes in this profile and identified programmed cell death protein 4 (PDCD4) and Kruppel-like factor 6 (KLF6) as critical regulators and surrogate markers of prostatic tissue architectures, which form a gene signature that robustly predicts clinical prognosis with a remarkable accuracy in several large series of PCA tumors (total n = 161; concordance index, 0.913 to 0.951). Thus, by exploiting the genomic program associated with prostate glandular differentiation, we identified acini-like PCA and related molecular markers that significantly enhance prognostic prediction of human PCA.


Assuntos
Células Acinares/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Morfogênese/genética , Próstata/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células Acinares/metabolismo , Idoso , Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Prognóstico , Próstata/crescimento & desenvolvimento , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA/genética , Recidiva
19.
Int J Med Sci ; 11(8): 779-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936140

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with poor prognosis. We aimed to identify a panel of CpG methylation biomarkers for prognosis prediction of ESCC patients. METHODS: Illumina's GoldenGate methylation array, supervised principal components, Kaplan-Meier survival analyses and Cox regression model were conducted on dissected tumor tissues from a training cohort of 40 ESCC patients to identify potential CpG methylation biomarkers. Pyrosequencing quantitative methylation assay were performed to validate prognostic CpG methylation biomarkers in 61 ESCC patients. The correlation between DNA methylation and RNA expression of a validated marker, SOX17, was examined in a validation cohort of 61 ESCC patients. RESULTS: We identified a panel of nine CpG methylation probes located at promoter or exon1 region of eight genes including DDIT3, FES, FLT3, NTRK3, SEPT5, SEPT9, SOX1, and SOX17, for prognosis prediction in ESCC patients. Risk score calculated using the eight-gene panel statistically predicted poor outcome for patients with high risk score. These eight-gene also showed a significantly higher methylation level in tumor tissues than their corresponding normal samples in all patients analyzed. In addition, we also detected an inverse correlation between CpG hypermethylation and the mRNA expression level of SOX17 gene in ESCC patients, indicating that DNA hypermethylation was responsible for decreased expression of SOX17. CONCLUSIONS: This study established a proof-of-concept CpG methylation biomarker panel for ESCC prognosis that can be further validated by multiple cohort studies. Functional characterization of the eight prognostic methylation genes in our biomarker panel could help to dissect the mechanism of ESCC tumorigenesis.


Assuntos
Carcinoma de Células Escamosas/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Neoplasias Esofágicas/genética , Proteínas de Neoplasias/biossíntese , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinogênese , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Prognóstico , Regiões Promotoras Genéticas
20.
Cancer Med ; 12(2): 1588-1601, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35757841

RESUMO

BACKGROUND: Tumor cells may aberrantly express metabolic enzymes to adapt to their environment for survival and growth. Targeting cancer-specific metabolic enzymes is a potential therapeutic strategy. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of oxaloacetate to phosphoenolpyruvate and links the tricarboxylic acid cycle and glycolysis/gluconeogenesis. Mitochondrial PEPCK (PEPCK-M), encoded by PCK2, is an isozyme of PEPCK and is distributed in mitochondria. Overexpression of PCK2 has been identified in many human cancers and demonstrated to be important for the survival program initiated upon metabolic stress in cancer cells. We evaluated the expression status of PEPCK-M and investigated the function of PEPCK-M in breast cancer. METHODS: We checked the expression status of PEPCK-M in breast cancer samples by immunohistochemical staining. We knocked down or overexpressed PCK2 in breast cancer cell lines to investigate the function of PEPCK-M in breast cancer. RESULTS: PEPCK-M was highly expressed in estrogen receptor-positive (ER+ ) breast cancers. Decreased cell proliferation and G0 /G1 arrest were induced in ER+ breast cancer cell lines by knockdown of PCK2. PEPCK-M promoted the activation of mTORC1 downstream signaling molecules and the E2F1 pathways in ER+ breast cancer. In addition, glucose uptake, intracellular glutamine levels, and mTORC1 pathways activation by glucose and glutamine in ER+ breast cancer were attenuated by PCK2 knockdown. CONCLUSION: PEPCK-M promotes proliferation and cell cycle progression in ER+ breast cancer via upregulation of the mTORC1 and E2F1 pathways. PCK2 also regulates nutrient status-dependent mTORC1 pathway activation in ER+ breast cancer. Further studies are warranted to understand whether PEPCK-M is a potential therapeutic target for ER+ breast cancer.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Humanos , Feminino , Fosfoenolpiruvato/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Glutamina/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA