RESUMO
BACKGROUND: The applicability and accuracy of artificial intelligence (AI)-assisted bone age assessment and adult height prediction methods in girls with early puberty are unknown. OBJECTIVE: To analyze the performance of AI-assisted bone age assessment methods by comparing the corresponding methods for predicted adult height with actual adult height. MATERIALS AND METHODS: This retrospective review included 726 girls with early puberty, 87 of whom had reached adult height at last follow-up. Bone age was evaluated using the Greulich-Pyle (GP), Tanner-Whitehouse (TW3-RUS) and China 05 RUS-CHN (RUS-CHN) methods. Predicted adult height was calculated using the China 05 (CH05), TW3 and Bayley-Pinneau (BP) methods. RESULTS: We analyzed 1,663 left-hand radiographs, including 155 from girls who had reached adult height. In the 6-8- and 9-11-years age groups, bone age differences were smaller than those in the 12-14-years group; however, the differences between predicted adult height and actual adult height were larger than those in the 12-14-years group. TW3 overestimated adult height by 0.4±2.8 cm, while CH05 and BP significantly underestimated adult height by 2.9±3.6 cm and 1.3±3.8 cm, respectively. TW3 yielded the highest proportion of predicted adult height within ±5 cm of actual adult height (92.9%), with the highest correlation between predicted and actual adult heights. CONCLUSION: The differences in measured bone ages increased with increasing bone age. However, the corresponding method for predicting adult height was more accurate when the bone age was older. TW3 might be more suitable than CH05 and BP for predicting adult height in girls with early puberty. Methods for predicting adult height should be optimized for populations of the same ethnicity and disease.
Assuntos
Determinação da Idade pelo Esqueleto , Inteligência Artificial , Estatura , População do Leste Asiático , Adolescente , Criança , Feminino , Humanos , Determinação da Idade pelo Esqueleto/métodos , Puberdade , Puberdade Precoce , Estudos RetrospectivosRESUMO
AIM: This cross-sectional study was designed to characterize by age the ratios of limb segments length to height and extremities-trunk ratio and body proportions of southern Chinese children. METHODS: Data were collected from students (n = 4715) from five school, aged 6-17 years, in the city of Chongqing. Their standing height, sitting height, arm span, forearm length, upper arm length, leg length, lower leg length, and ratios of extremities to trunk length were determined. RESULTS: Sitting height, forearm length, upper arm length, arm span, and lower leg length were highly correlated with standing height (r > 0.9; P < 0.05). The ratio of extremities to trunk increased till about 13 years of age for both genders. CONCLUSIONS: The length of extremities and their ratio to sitting height reflect regular changes of growth in Chinese children as their age, and limb segments length is highly correlated with height.
Assuntos
Antropometria/métodos , Povo Asiático , Estatura/etnologia , Desenvolvimento Infantil , Adolescente , Criança , China , Estudos Transversais , Extremidades , Feminino , Inquéritos Epidemiológicos , Humanos , MasculinoRESUMO
BACKGROUND: Microemulsion electrokinetic chromatography (MEEKC) is a mode of capillary electrophoresis with a wide range of applications in which microemulsion is utilized as background electrolyte to achieve the separation of analytes. Microemulsions are composed of oil droplets, aqueous buffer, surfactant, and co-surfactant. Currently, conventional organic reagents act as the most commonly used oil phase in microemulsions, which are unfriendly to the environment. Recently, deep eutectic solvent (DES) has become a new type of eco-friendly solvent due to its non-toxicity. Therefore, it is of great value to establish a new MEEKC method by replacing conventional organic reagents as the oil phase with DES. RESULTS: The novel DES/W MEEKC method was established for phenolic compounds in Senecio scandens samples. Single-factor experiments and response surface methodology were performed to systematically optimize the crucial parameters for the method, including the type and content of the oil phase, surfactant content, concentration of borax buffer, and pH of the background solution. Under the optimized conditions, satisfactory regression curves were established for all standard analytes with correlation coefficients ≥0.9990. The method featured high sensitivity and favorable accuracy, with the instrumental detection limit in the range of 0.22-1.04 µg/mL, and intraday and interday precision for migration time expressed as relative standard deviations of 0.18-0.82% and 1.25-2.50%, respectively. The DES/W MEEKC method was successfully applied to Senecio scandens with good recoveries of 87.72-106.99%. In conclusion, the newly established DES/W MEEKC method is highly efficient, green and environmentally friendly. SIGNIFICANCE: DES is considered a green and efficient solvent. The DES/W MEEKC method is highly efficient and environmentally friendly. Actually, the method provides a novel and effective analytical tool for the simultaneous separation and determination of multiple phenolic compounds, especially in complex plant matrices. In the future, the DES/W MEEKC method still has the prospect of being widely used in the separation of other complex phytochemicals.
RESUMO
The chemical and biologically active characterization of jujube samples (fruits, cores, and leaves) were carried out by the integrated nontargeted metabolomics and bioassay. Firstly, collision cross-section values of active compounds in jujubes were determined by ultrahigh-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Then, a multidimensional statistical analysis that contained principal component analysis, partial least squares-discriminant analysis and hierarchical clustering analysis was employed to effectively cluster different tissues and types of jujubes, making identification more scientific. Furthermore, angiotensin-converting enzyme (ACE) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) were used to evaluate the quality of jujubes from a double activity dimension. The analytical results obtained by using ACE and DPPH to evaluate the quality of jujube were different from multivariate statistics, providing a reference for the application of jujube. Therefore, integrating chemical and biological perspectives to evaluate the quality of jujube provided a more comprehensive evaluation and effective reference for clinical needs.
Assuntos
Antioxidantes , Compostos de Bifenilo , Ziziphus , Antioxidantes/farmacologia , Antioxidantes/análise , Ziziphus/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Frutas/químicaRESUMO
Water-soluble malonate multiadducts of paramagnetic gadolinium endohedral metallofullerene, Gd@C82[C(COOH)2]6 and Gd@C82[C(COOH)2]8, were synthesized by Bingel-Hirsch reaction. Gd@C82 was firstly reacted with diethyl bromomalonate in the presence of alkali metal hydride to produce malonic ester multiadducted derivatives, Gd@C82[C(COOCH2CH3)2]x (x = 3-8), by Bingel reaction. They were isolated and purified to obtain Gd@C82[C(COOCH2CH3)2]6 and Gd@C82[C(COOCH2CH3)2]8 by silica-gel column chromatography with a gradient elution method, which were subsequently hydrolyzed to yield water-soluble Gd@C82[C(COOH)2]6 and Gd@C82[C(COOH)2]8 by Hirsch reaction. The structures of the derivatives were characterized by Fourier transform infrared spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. The longitudinal relaxivities of Gd@C82[C(COOH)2]8 and Gd@C82[C(COOH)2]6, in buffer solution, were found to be 18.20 and 11.08 mM(-1) s(-1) at concentration range between 0.001-0.025 mM Gd, and to be 12.71 and 6.73 mM(-1) s(-1) between 0.050-0.200 mM Gd, respectively. The results showed that the measured relaxivities for malonate derivatives of Gd@C82 were dependent on the concentration of these solutions and the number of hydrophilic carboxyl groups appended on the surface of the Gd@C82 cage.
RESUMO
A novel online two-step pressure injection-assisted stacking preconcentration method, which involves sweeping and affinity micelles in micellar electrokinetic chromatography was developed to simultaneously measure various organic anions. The micellar solution was a mixed solution that contained 0.3 mM didodecyldimethylammonium bromide and 20 mM borax. After the micellar solution was injected for 60 s, the tested analytes prepared in 20 mM borax were introduced into the capillary for 150 s. The key experimental factors that influenced the separation and sensitivity were investigated and optimized, including the concentration and injection time of the micellar solution, the concentration of borax in the sample solution, the concentration of sodium dodecyl sulfate and borax in the background electrolyte (BGE), the content of acetonitrile in the BGE and the injection time of the sample solution. Compared with typical injection methods, this method achieved sensitivity enhancement factors ranging from 85 to 97 under optimized conditions. Good linearity for matrix-matched calibration was established for all analytes with R2 values of 0.9986-0.9996. The intraday (n = 6) and interday (n = 6) precisions of the method were less than 2.85% when expressed as relative standard deviations. When the method was applied to analyze rice and dried ginger samples, analyte recoveries ranged from 85.81% to 106.59%. Through sweeping and affinity micelles, stacking preconcentration method was successfully employed to analyze trace amounts of fenoprop and 2,4-dichlorophenoxyacetic acid in rice and dried ginger samples.
Assuntos
Cromatografia Capilar Eletrocinética Micelar , Herbicidas , Herbicidas/análise , Cromatografia Capilar Eletrocinética Micelar/métodos , Micelas , ÂnionsRESUMO
A unique and effective comprehensive two-dimensional liquid chromatography system was established and applied for the analysis of bioactive components in honeysuckle. Under the optimal conditions, Eclipse Plus C18 (2.1 × 100 mm, 3.5 µm, Agilent) and SB-C18 (4.6 × 50 mm, 1.8 µm, Agilent) columns were chosen for the first dimension (1D) and the second dimension (2D) separation. The optimal flow rates of 1D and 2D were 0.12 mL/min and 2.0 mL/min, respectively. Additionally, the proportion of organic solution was optimized to enhance orthogonality and integrated shift, and full gradient elution mode was adopted to improve chromatographic resolution. Furthermore, a total of 57 compounds were identified by molecular weight, retention time and collision cross-section value obtained from ion mobility mass spectrometry. Based on the data obtained from the principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis, the categories of honeysuckle in different regions were significantly different. Moreover, the half maximal inhibitory concentration values of most samples were between 0.37 and 1.55 mg/mL, and most samples were potent α-glucosidase inhibitors, which is better for the evaluation of the quality of drugs from two aspects of substance content and activity.
Assuntos
Lonicera , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodosRESUMO
Estrogen can promote the acceleration of bone maturation and phthalate esters (PAEs) have estrogen-mimicking effects. We investigated whether PAEs are associated with the acceleration of bone age (BA) in girls with early onset of puberty (EOP). This case-control study enrolled 254 girls with EOP from the Endocrinology Department at Shenzhen Children's Hospital between December 2018 and August 2019. Ultra-performance liquid chromatography and tandem mass spectrometry were used to analyze the 10 metabolites of PAEs (mPAEs) in urine samples. BA was measured using an artificial intelligence system. BA exceeding the chronological age (CA) by > 2 years (BA-CA ≥ 2 years) was referred to as significant BA advancement. Participants were divided into groups A (BA-CA ≥ 2 years; case group) and B (BA-CA < 2 years; control group). Propensity score matching (PSM) was performed for both groups in a 1:2 ratio with a caliper of 0.25. To identify potential dose-response relationships between PAEs exposure and BA advancement, we grouped the participants after PSM according to the tertiles of the mPAE concentrations. After PSM, 31 and 62 girls in groups A and B were selected. The concentration of Mono-ethyl phthalate (MEP) in group A was significantly higher than in group B (11.83 µg/g vs. 7.11 µg/g, P < 0.05); there was no significant difference in the levels of other mPAEs between the groups. The degree of BA advancement and proportion of significantly advanced BA in the lowest, middle, and highest tertiles of the MEP sequentially increased, as well as in the lowest, middle, and highest tertiles of Mono-(2-ethyl-5-carboxypentyl) phthalate; however, these were only statistically different between the highest and lowest MEP tertiles (both P < 0.05). For the remaining mPAEs, differences in the degree of BA advancement among the lowest, middle, and highest tertiles, as well as differences in the proportion of significantly advanced BA among the lowest, middle, and highest tertiles, were not significant (all P > 0.05). Our findings suggested that MEP was positively associated with BA advancement in girls with EOP. Exposure to PAEs may promote accelerated bone maturation.
Assuntos
Inteligência Artificial , Puberdade Precoce , Estudos de Casos e Controles , Criança , Pré-Escolar , China , Ésteres , Estrogênios , Feminino , Humanos , Ácidos Ftálicos , Pontuação de Propensão , PuberdadeRESUMO
OBJECTIVE: To analyze the relationship between hypercoagulable state and circulating tumor cells (CTCs) in peripheral blood, pathological characteristics, and prognosis of lung cancer patients. METHOD: A total of 148 patients with primary lung cancer diagnosed and treated in our hospital from January 2017 to January 2019 were selected as the research objects. According to the CTC test results, the patients were divided into CTC-positive group and CTC-negative group. Also, the coagulation index of patients was tested. According to the blood coagulation index test results, patients were divided into hypercoagulable group and non-hypercoagulable group. The relationship between hypercoagulable state and pathological characteristics of lung cancer patients was analyzed by single factor analysis and multiple logistic regression model. Kaplan-Meier survival curve was applied to analyze the relationship between hypercoagulable state and the prognosis of lung cancer patients. RESULTS: The platelets (PLTs), fibrinogen (FIB), D-dimer (D-D), and prothrombin time (PT) in CTC-positive group were significantly higher than those in CTC-negative group. There was no significant relationship between the patient's gender, smoking history, pathological type, and the hypercoagulable state of the patients. The proportion of patients aged 60 years or older, with TMN stage III or IV and lymph node metastasis, in the hypercoagulable group was significantly higher than that in the non-hypercoagulable group. Logistic regression analysis showed that there was an independent relationship between the patient's age, lymph node metastasis, and hypercoagulable state. As of January 2020, among the 148 patients with lung cancer follow-up, 5 patients were lost and 52 died. The median survival time of patients in the hypercoagulable group was 82 weeks, which was significantly lower than the 104 weeks in the nonhypercoagulable group. CONCLUSION: There is a certain relationship between hypercoagulable state and CTC positive in lung cancer patients. There is an independent relationship between the patient's age, lymph node metastasis, and the hypercoagulable state. The median survival time of patients in the hypercoagulable group was significantly lower than that in the non-hypercoagulable group.
RESUMO
Pure and Ni-doped ZnO nanostructures have been synthesized by a solvothermal process. The structure, morphology and properties of as-synthesized samples have been investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), selected-area electron diffraction (SAED), UV-vis spectrometer as well as by vibrating sample magnetometer (VSM). XRD and EDS studies indicated that the as-prepared products were well-crystallized wurtzite hexagonal structure. The SEM and TEM images show that the individual Zn0.96Ni0.04O nanostructure is composed of several nanorods with average diameter of 200 nm and lengths of 500 nm. The structure and morphology analyses show that Ni doping can influence the nanostructures morphology, but cannot change the crystal structures of ZnO samples. The UV-vis spectra showed that Ni dopant can result in an appreciable blue-shift for the absorption edge of the Ni-doped ZnO samples. The band gap energy of the Zn0.96Ni0.04O nanostructure was about 3.23 eV. By magnetic measurements, it was observed that the pure ZnO nanostructure exhibits diamagnetic property while the sample of 4% Ni shows an obvious ferromagnetic behavior at room temperature due to the formation of solid solution Zn0.96Ni0.04O, sp-d and d-d carrier exchange interactions, and the presence of abundant defects and oxygen vacancies.