Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 20(1): 90, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710416

RESUMO

BACKGROUND: Nonobstructive azoospermia (NOA) is one of the most difficult forms of male infertility to treat, and its pathogenesis is still unclear. miRNAs can regulate autophagy by affecting their target gene expression. Our previous study found that miR-188-3p expression in NOA patients was low. There are potential binding sites between the autophagy gene ATG7 and miR-188-3p. This study aimed to verify the binding site between miR-188-3p and ATG7 and whether miR-188-3p affects autophagy and participates in NOA by regulating ATG7 to influence the autophagy marker genes LC3 and Beclin-1. METHODS: Testicular tissue from 16 NOA patients and 16 patients with normal spermatogenesis and 5 cases in each group of pathological sections were collected. High-throughput sequencing was performed to detect mRNA expression differences. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemical staining and immunofluorescence were used to detect protein localization and expression. Autophagosome changes were detected by electron microscopy. The targeting relationship between miR-188-3p and ATG7 was confirmed by a luciferase assay. RESULTS: ATG7 protein was localized in the cytoplasm of spermatogenic cells at all levels, and the ATG7 gene (p = 0.019) and protein (p = 0.000) were more highly expressed in the NOA group. ATG7 expression after overexpression/inhibition of miR-188-3p was significantly lower (p = 0.029)/higher (p = 0.021) than in the control group. After overexpression of miR-188-3p, the ATG7 3'UTR-WT luciferase activity was impeded (p = 0.004), while the ATG7 3'UTR-MUT luciferase activity showed no significant difference (p = 0.46). LC3 (p = 0.023) and Beclin-1 (p = 0.041) expression in the NOA group was significantly higher. LC3 and Beclin-1 gene expression after miR-188-3p overexpression/inhibition was significantly lower (p = 0.010 and 0.024, respectively) and higher (p = 0.024 and 0.049, respectively). LC3 punctate aggregation in the cytoplasm decreased after overexpression of miR-188-3p, while the LC3 punctate aggregation in the miR-188-3p inhibitor group was higher. The number of autophagosomes in the miR-188-3p mimic group was lower than the number of autophagosomes in the mimic NC group. CONCLUSIONS: LC3 and Beclin-1 were more highly expressed in NOA testes and negatively correlated with the expression of miR-188-3p, suggesting that miR-188-3p may be involved in the process of autophagy in NOA. miR-188-3p may regulate its target gene ATG7 to participate in autophagy anDual luciferase experiment d affect the development of NOA.


Assuntos
Azoospermia , MicroRNAs , Regiões 3' não Traduzidas , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Azoospermia/genética , Proteína Beclina-1/genética , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Mol Cell Endocrinol ; 592: 112292, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830447

RESUMO

RESEARCH QUESTION: Granulosa cells (GCs) dysfunction plays a crucial role in the pathogenesis of polycystic ovary syndrome (PCOS). It is reported that YTH domain-containing family protein 2 (YTHDF2) is upregulated in mural GCs of PCOS patients. What effect does the differential expression of YTHDF2 have in PCOS patients? DESIGN: Mural GCs and cumulus GCs from 15 patients with PCOS and 15 ovulatory controls and 4 cases of pathological sections in each group were collected. Real-time PCR, Western Blot, immunohistochemistry, and immunofluorescence experiments were conducted to detect gene and protein expression. RNA immunoprecipitation assay was performed to evaluate the binding relationship between YTHDF2 and MSS51. Mitochondrial morphology, cellular ATP and ROS levels and glycolysis-related gene expression were detected after YTHDF2 overexpression or MSS51 inhibition. RESULTS: In the present study, we found that YTHDF2 was upregulated in GCs of PCOS patients while MSS51 was downregulated. YTHDF2 protein can bind to MSS51 mRNA and affect MSS51 expression. The reduction of MSS51 expression or the increase in YTHDF2 expression can lead to mitochondrial damage, reduced ATP levels, increased ROS levels and reduced expression of LDHA, PFKP and PKM. CONCLUSIONS: YTHDF2 may regulate the expression of MSS51, affecting the structure and function of mitochondria in GCs and interfering with cellular glycolysis, which may disturb the normal biological processes of GCs and follicle development in PCOS patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA