Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
RNA Biol ; 18(8): 1111-1123, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33043803

RESUMO

Function of bacterial small non-coding RNAs (sRNAs) and overall RNA metabolism is largely shaped by a vast diversity of RNA-protein interactions. However, in non-model bacteria with defined non-coding transcriptomes the sRNA interactome remains almost unexplored. We used affinity chromatography to capture proteins associated in vivo with MS2-tagged trans-sRNAs that regulate nutrient uptake (AbcR2 and NfeR1) and cell cycle (EcpR1) mRNAs by antisense-based translational inhibition in the nitrogen-fixing α-rhizobia Sinorhizobium meliloti. The three proteomes were rather distinct, with that of EcpR1 particularly enriched in cell cycle-related enzymes, whilst sharing several transcription/translation-related proteins recurrently identified associated with sRNAs. Strikingly, MetK, the synthetase of the major methyl donor S-adenosylmethionine, was reliably recovered as a binding partner of the three sRNAs, which reciprocally co-immunoprecipitated with a FLAG-tagged MetK variant. Induced (over)expression of the trans-sRNAs and MetK depletion did not influence canonical riboregulatory traits, `for example, protein titration or sRNA stability, respectively. An in vitro filter assay confirmed binding of AbcR2, NfeR1 and EcpR1 to MetK and further revealed interaction of the protein with other non-coding and coding transcripts but not with the 5S rRNA. These findings uncover a broad specificity for RNA binding as an unprecedented feature of this housekeeping prokaryotic enzyme.


Assuntos
Metionina Adenosiltransferase/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Sinorhizobium meliloti/genética , Regulação Bacteriana da Expressão Gênica , Metionina Adenosiltransferase/metabolismo , Fixação de Nitrogênio/fisiologia , Nodulação/fisiologia , Plantas/microbiologia , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Bacteriano/classificação , RNA Bacteriano/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , S-Adenosilmetionina/metabolismo , Sinorhizobium meliloti/enzimologia , Simbiose/fisiologia , Transcriptoma
2.
Nucleic Acids Res ; 45(3): 1371-1391, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180335

RESUMO

Structural and biochemical features suggest that the almost ubiquitous bacterial YbeY protein may serve catalytic and/or Hfq-like protective functions central to small RNA (sRNA)-mediated regulation and RNA metabolism. We have biochemically and genetically characterized the YbeY ortholog of the legume symbiont Sinorhizobium meliloti (SmYbeY). Co-immunoprecipitation (CoIP) with a FLAG-tagged SmYbeY yielded a poor enrichment in RNA species, compared to Hfq CoIP-RNA uncovered previously by a similar experimental setup. Purified SmYbeY behaved as a monomer that indistinctly cleaved single- and double-stranded RNA substrates, a unique ability among bacterial endoribonucleases. SmYbeY-mediated catalysis was supported by the divalent metal ions Mg2+, Mn2+ and Ca2+, which influenced in a different manner cleavage efficiency and reactivity patterns, with Ca2+ specifically blocking activity on double-stranded and some structured RNA molecules. SmYbeY loss-of-function compromised expression of core energy and RNA metabolism genes, whilst promoting accumulation of motility, late symbiotic and transport mRNAs. Some of the latter transcripts are known Hfq-binding sRNA targets and might be SmYbeY substrates. Genetic reporter and in vitro assays confirmed that SmYbeY is required for sRNA-mediated down-regulation of the amino acid ABC transporter prbA mRNA. We have thus discovered a bacterial endoribonuclease with unprecedented catalytic features, acting also as gene silencing enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Sinorhizobium meliloti/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Catálise , Cromossomos Bacterianos/genética , Endorribonucleases/química , Endorribonucleases/genética , Deleção de Genes , Perfilação da Expressão Gênica , Inativação Gênica , Genes Bacterianos , Genes Reporter , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinorhizobium meliloti/genética , Especificidade por Substrato , Simbiose/genética
3.
Environ Microbiol ; 19(7): 2661-2680, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28401641

RESUMO

Small non-coding RNAs (sRNAs) are expected to have pivotal roles in the adaptive responses underlying symbiosis of nitrogen-fixing rhizobia with legumes. Here, we provide primary insights into the function and activity mechanism of the Sinorhizobium meliloti trans-sRNA NfeR1 (Nodule Formation Efficiency RNA). Northern blot probing and transcription tracking with fluorescent promoter-reporter fusions unveiled high nfeR1 expression in response to salt stress and throughout the symbiotic interaction. The strength and differential regulation of nfeR1 transcription are conferred by a motif, which is conserved in nfeR1 promoter regions in α-proteobacteria. NfeR1 loss-of-function compromised osmoadaptation of free-living bacteria, whilst causing misregulation of salt-responsive genes related to stress adaptation, osmolytes catabolism and membrane trafficking. Nodulation tests revealed that lack of NfeR1 affected competitiveness, infectivity, nodule development and symbiotic efficiency of S. meliloti on alfalfa roots. Comparative computer predictions and a genetic reporter assay evidenced a redundant role of three identical NfeR1 unpaired anti Shine-Dalgarno motifs for targeting and downregulation of translation of multiple mRNAs from transporter genes. Our data provide genetic evidence of the hyperosmotic conditions of the endosymbiotic compartments. NfeR1-mediated gene regulation in response to this cue could contribute to coordinate nutrient uptake with the metabolic reprogramming concomitant to symbiotic transitions.


Assuntos
Medicago sativa/microbiologia , RNA Bacteriano/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose , Adaptação Fisiológica , Sequência Conservada , Medicago sativa/fisiologia , Osmose , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , RNA/metabolismo , RNA Bacteriano/genética , Sinorhizobium meliloti/genética
4.
RNA Biol ; 14(12): 1672-1677, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28805544

RESUMO

Extensive work in model enterobacteria has evidenced that the RNA chaperone Hfq and several endoribonucleases, such as RNase E or RNase III, serve pivotal roles in small RNA-mediated post-transcriptional silencing of gene expression. Characterization of these protein hubs commonly provide global functional and mechanistic insights into complex sRNA regulatory networks. The legume endosymbiont Sinorhizobium meliloti is a non-classical model bacterium with a very complex lifestyle in which riboregulation is expected to play important adaptive functions. Here, we discuss current knowledge about RNA silencing in S. meliloti from the perspective of the activity of Hfq and a recently discovered endoribonuclease (YbeY) exhibiting unprecedented catalytic versatility for the cleavage of single- and double-stranded RNA molecules.


Assuntos
Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Inativação Gênica , Plantas/microbiologia , Interferência de RNA , Simbiose , Catálise , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Metais/metabolismo , RNA Bacteriano/genética
5.
New Phytol ; 205(1): 255-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25252248

RESUMO

The genetic regulation underlying the effect of arsenic (As(III)) on the model symbiosis Medicago-Ensifer was investigated using a combination of physiological (split-roots), microscopy and genetic (microarrays, qRT-PCR and composite plants) tools. Nodulation was very sensitive to As(III) (median inhibitory dose (ID50) = 20 µM). The effect on root elongation and on nodulation was local (nonsystemic). A battery of stress (salt, drought, heat shock, metals, etc.)-related genes were induced. Glutathione played a pivotal role in tolerance/detoxification, together with secondary metabolites ((iso)flavonoids and phenylpropanoids). However, antioxidant enzymes were not activated. Concerning the symbiotic interaction, molecular evidence suggesting that rhizobia alleviate As stress is for the first time provided. Chalcone synthase (which is involved in the first step of the legume-rhizobia cross-talk) was strongly enhanced, suggesting that the plants are biased to establish symbiotic interactions under As(III) stress. In contrast, 13 subsequent nodulation genes (involved in nodulation factors (Nod factors) perception, infection, thread initiation and progression, and nodule morphogenesis) were repressed. Overexpression of the ethylene responsive factor ERN in composite plants reduced root stress and partially restored nodulation, whereas overexpression of the early nodulin ENOD12 enhanced nodulation both in the presence and, particularly, in the absence of As, without affecting root elongation. Several transcription factors were identified, which could be additional targets for genetic engineering aiming to improve nodulation and/or alleviate root stress induced by this toxic.


Assuntos
Arsênio/toxicidade , Perfilação da Expressão Gênica , Medicago truncatula/genética , Medicago truncatula/microbiologia , Sinorhizobium/fisiologia , Simbiose/genética , Transcriptoma/genética , Arsenitos/toxicidade , Análise por Conglomerados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Nodulação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Simbiose/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Environ Microbiol ; 16(7): 2341-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24707988

RESUMO

Myxococcus xanthus is a social bacterium that preys on prokaryotic and eukaryotic microorganisms. Co-culture of M. xanthus with reference laboratory strains and field isolates of the legume symbiont Sinorhizobium meliloti revealed two different predatory patterns that resemble frontal and wolf-pack attacks. Use of mutants impaired in the two types of M. xanthus surface motility (A or adventurous and S or social motility) and a csgA mutant, which is unable to form macroscopic travelling waves known as ripples, has demonstrated that both motility systems but not rippling are required for efficient predation. To avoid frontal attack and reduce killing rates, rhizobial cells require a functional expR gene. ExpR regulates expression of genes involved in a variety of functions. The use of S. meliloti mutants impaired in several of these functions revealed that the exopolysaccharide galactoglucan (EPS II) is the major determinant of the M. xanthus predatory pattern. The data also suggest that this biopolymer confers an ecological advantage to rhizobial survival in soil, which may have broad environmental implications.


Assuntos
Antibiose/genética , Proteínas de Bactérias/genética , Galactanos/biossíntese , Regulação Bacteriana da Expressão Gênica , Glucanos/biossíntese , Myxococcus xanthus/patogenicidade , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium meliloti/metabolismo , Adaptação Biológica , Proteínas de Bactérias/metabolismo , Viabilidade Microbiana , Movimento , Mutação , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Percepção de Quorum , Sinorhizobium meliloti/genética , Transativadores/genética , Transativadores/metabolismo
7.
RNA Biol ; 11(5): 563-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24786641

RESUMO

The RNA chaperone Hfq is a global post-transcriptional regulator in bacteria. Here, we used RNAseq to analyze RNA populations from the legume symbiont Sinorhizobium meliloti that were co-immunoprecipitated (CoIP-RNA) with a FLAG-tagged Hfq in five growth/stress conditions. Hfq-bound transcripts (1315) were largely identified in stressed bacteria and derived from small RNAs (sRNAs), both trans-encoded (6.4%) and antisense (asRNAs; 6.3%), and mRNAs (86%). Pull-down with Hfq recovered a small proportion of annotated S. meliloti sRNAs (14% of trans-sRNAs and 2% of asRNAs) suggesting a discrete impact of this protein in sRNA pathways. Nonetheless, Hfq selectively stabilized CoIP-enriched sRNAs, anticipating that these interactions are functionally significant. Transcription of 26 Hfq-bound sRNAs was predicted to occur from promoters recognized by the major stress σ factors σ(E2) or σ(H1/2). Recovery rates of sRNAs in each of the CoIP-RNA libraries suggest a large impact of Hfq-assisted riboregulation in S. meliloti osmoadaptation. Hfq directly targeted 18% of the predicted S. meliloti mRNAs, which encode functionally diverse proteins involved in transport and metabolism, σ(E2)-dependent stress responses, quorum sensing, flagella biosynthesis, ribosome, and membrane assembly or symbiotic nitrogen fixation. Canonical targeting of the 5' regions of two of the ABC transporter mRNAs by the homologous Hfq-binding AbcR1 and AbcR2 sRNAs leading to inhibition of protein synthesis was confirmed in vivo. We therefore provide a comprehensive resource for the systems-level deciphering of hitherto unexplored S. meliloti stress and symbiotic post-transcriptional regulons and the identification of Hfq-dependent sRNA-mRNA regulatory pairs.


Assuntos
Fator Proteico 1 do Hospedeiro/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Estresse Fisiológico , Pareamento de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Reprodutibilidade dos Testes
8.
Methods Mol Biol ; 2751: 179-203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265717

RESUMO

Computational comparative genomics and, later, high-throughput transcriptome profiling (RNAseq) have uncovered a plethora of small noncoding RNA species (sRNAs) with potential regulatory roles in bacteria. A large fraction of sRNAs are differentially regulated in response to different biotic and abiotic stimuli and have the ability to fine-tune posttranscriptional reprogramming of gene expression through protein-assisted antisense interactions with trans-encoded target mRNAs. However, this level of gene regulation is still understudied in most non-model bacteria. Here, we compile experimental methods to detect expression, determine 5'/3'-ends, assess transcriptional regulation, generate mutants, and validate candidate target mRNAs of trans-acting sRNAs (trans-sRNAs) identified in the nitrogen-fixing α-rhizobium Sinorhizobium meliloti. The workflow, molecular tools, and methods are suited to investigate the function of newly identified base-pairing trans-sRNAs in phylogenetically related α-rhizobia.


Assuntos
Fabaceae , Pequeno RNA não Traduzido , Sinorhizobium meliloti , Fluxo de Trabalho , Verduras , Bactérias , RNA Mensageiro
9.
Mol Plant Microbe Interact ; 26(2): 160-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22991999

RESUMO

Symbiotic chronic infection of legumes by rhizobia involves transition of invading bacteria from a free-living environment in soil to an intracellular state as differentiated nitrogen-fixing bacteroids within the nodules elicited in the host plant. The adaptive flexibility demanded by this complex lifestyle is likely facilitated by the large set of regulatory proteins encoded by rhizobial genomes. However, proteins are not the only relevant players in the regulation of gene expression in bacteria. Large-scale high-throughput analysis of prokaryotic genomes is evidencing the expression of an unexpected plethora of small untranslated transcripts (sRNAs) with housekeeping or regulatory roles. sRNAs mostly act in response to environmental cues as post-transcriptional regulators of gene expression through protein-assisted base-pairing interactions with target mRNAs. Riboregulation contributes to fine-tune a wide range of bacterial processes which, in intracellular animal pathogens, largely compromise virulence traits. Here, we summarize the incipient knowledge about the noncoding RNome structure of nitrogen-fixing endosymbiotic bacteria as inferred from genome-wide searches for sRNA genes in the alfalfa partner Sinorhizobium meliloti and further comparative genomics analysis. The biology of relevant S. meliloti RNA chaperones (e.g., Hfq) is also reviewed as a first global indicator of the impact of riboregulation in the establishment of the symbiotic interaction.


Assuntos
Alphaproteobacteria/fisiologia , Proteínas de Bactérias/genética , Medicago sativa/microbiologia , RNA não Traduzido/genética , Alphaproteobacteria/genética , Regulação Bacteriana da Expressão Gênica , Genômica , Fator Proteico 1 do Hospedeiro/genética , Fixação de Nitrogênio , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Simbiose
10.
mBio ; : e0200323, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850753

RESUMO

The nitrogen (N) status transduced via the NtrBC two-component system is a major signaling cue in the root nodule endosymbiosis of diazotrophic rhizobia with legumes. NtrBC is upregulated in the N-limiting rhizosphere environment at the onset of nodulation but silenced in nodules to favor the assimilation of the fixed N into plant biomass. We reported that the trans-acting sRNA NfeR1 (Nodule Formation Efficiency RNA) broadly influences the symbiotic performance of the α-rhizobium Sinorhizobium meliloti. Here, we show that NfeR1 is indeed an N-responsive sRNA that fine-tunes NtrBC output during the symbiotic transition. Biochemical and genetic approaches unveiled that NtrC and the LysR-type symbiotic regulator LsrB bind at distinct nearby sites in the NfeR1 promoter, acting antagonistically as repressor and activator of transcription, respectively. This complex transcriptional control specifies peak NfeR1 steady-state levels in N-starved and endosymbiotic bacteria. Furthermore, NfeR1 base pairs the translation initiation region of the histidine kinase coding mRNA ntrB, causing a decrease in both NtrB and NtrC abundance as assessed by double-plasmid genetic assays. In the context of endogenous regulation, NfeR1-mediated ntrBC silencing most likely amends the effective strength of the known operon autorepression exerted by NtrC. Accordingly, a lack of NfeR1 shifts the wild-type NtrBC output, restraining the fitness of free-living rhizobia under N stress and plant growth upon nodulation. The mixed NtrBC-NfeR1 double-negative feedback loop is thus an unprecedented adaptive network motif that helps α-rhizobia adjust N metabolism to the demands of an efficient symbiosis with legume plants. IMPORTANCE Root nodule endosymbioses between diazotrophic rhizobia and legumes provide the largest input of combined N to the biosphere, thus representing an alternative to harmful chemical fertilizers for sustainable crop production. Rhizobia have evolved intricate strategies to coordinate N assimilation for their own benefit with N2 fixation to sustain plant growth. The rhizobial N status is transduced by the NtrBC two-component system, the seemingly ubiquitous form of N signal transduction in Proteobacteria. Here, we show that the regulatory sRNA NfeR1 (nodule formation efficiency RNA) of the alfalfa symbiont Sinorhizobium meliloti is transcribed from a complex promoter repressed by NtrC in a N-dependent manner and feedback silences ntrBC by complementary base-pairing. These findings unveil a more prominent role of NtrC as a transcriptional repressor than hitherto anticipated and a novel RNA-based mechanism for NtrBC regulation. The NtrBC-NfeR1 double-negative feedback loop accurately rewires symbiotic S. meliloti N metabolism and is likely conserved in α-rhizobia.

11.
Microb Cell Fact ; 11: 125, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22970813

RESUMO

BACKGROUND: The synthesis of cellulose is among the most important but poorly understood biochemical processes, especially in bacteria, due to its complexity and high degree of regulation. In this study, we analyzed both the production of cellulose by all known members of the Rhizobiaceae and the diversity of Rhizobium celABC operon predicted to be involved in cellulose biosynthesis. We also investigated the involvement in cellulose production and biofilm formation of celC gene encoding an endoglucanase (CelC2) that is required for canonical symbiotic root hair infection by Rhizobium leguminosarum bv. trifolii. RESULTS: ANU843 celC mutants lacking (ANU843ΔC2) or overproducing cellulase (ANU843C2+) produced greatly increased or reduced amounts of external cellulose micro fibrils, respectively. Calcofluor-stained cellulose micro fibrils were considerably longer when formed by ANU843ΔC2 bacteria rather than by the wild-type strain, in correlation with a significant increase in their flocculation in batch culture. In contrast, neither calcofluor-stained extracellular micro fibrils nor flocculation was detectable in ANU843C2+ cells. To clarify the role of cellulose synthesis in Rhizobium cell aggregation and attachment, we analyzed the ability of these mutants to produce biofilms on different surfaces. Alteration of wild-type CelC2 levels resulted in a reduced ability of bacteria to form biofilms both in abiotic surfaces and in planta. CONCLUSIONS: Our results support a key role of the CelC2 cellulase in cellulose biosynthesis by modulating the length of the cellulose fibrils that mediate firm adhesion among Rhizobium bacteria leading to biofilm formation. Rhizobium cellulose is an essential component of the biofilm polysaccharidic matrix architecture and either an excess or a defect of this "building material" seem to collapse the biofilm structure. These results position cellulose hydrolytic enzymes as excellent anti-biofilm candidates.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Celulase/metabolismo , Celulose/biossíntese , Raízes de Plantas/microbiologia , Rhizobium leguminosarum/enzimologia , Proteínas de Bactérias/genética , Celulase/genética , Mutação , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/fisiologia , Simbiose , Trifolium/microbiologia
12.
RNA Biol ; 9(2): 119-29, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22418845

RESUMO

We have performed a computational comparative analysis of six small non-coding RNA (sRNA) families in α-proteobacteria. Members of these families were first identified in the intergenic regions of the nitrogen-fixing endosymbiont S. meliloti by a combined bioinformatics screen followed by experimental verification. Consensus secondary structures inferred from covariance models for each sRNA family evidenced in some cases conserved motifs putatively relevant to the function of trans-encoded base-pairing sRNAs i.e., Hfq-binding signatures and exposed anti Shine-Dalgarno sequences. Two particular family models, namely αr15 and αr35, shared own sub-structural modules with the Rfam model suhB (RF00519) and the uncharacterized sRNA family αr35b, respectively. A third sRNA family, termed αr45, has homology to the cis-acting regulatory element speF (RF00518). However, new experimental data further confirmed that the S. meliloti αr45 representative is an Hfq-binding sRNA processed from or expressed independently of speF, thus refining the Rfam speF model annotation. All the six families have members in phylogenetically related plant-interacting bacteria and animal pathogens of the order of the Rhizobiales, some occurring with high levels of paralogy in individual genomes. In silico and experimental evidences predict differential regulation of paralogous sRNAs in S. meliloti 1021. The distribution patterns of these sRNA families suggest major contributions of vertical inheritance and extensive ancestral duplication events to the evolution of sRNAs in plant-interacting bacteria.


Assuntos
Alphaproteobacteria/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Sequência de Bases , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/química , Pequeno RNA não Traduzido/química , Sinorhizobium meliloti/genética
13.
Mol Plant Microbe Interact ; 24(7): 798-807, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21405987

RESUMO

The establishment of rhizobia as nitrogen-fixing endosymbionts within legume root nodules requires the disruption of the plant cell wall to breach the host barrier at strategic infection sites in the root hair tip and at points of bacterial release from infection threads (IT) within the root cortex. We previously found that Rhizobium leguminosarum bv. trifolii uses its chromosomally encoded CelC2 cellulase to erode the noncrystalline wall at the apex of root hairs, thereby creating the primary portal of its entry into white clover roots. Here, we show that a recombinant derivative of R. leguminosarum bv. trifolii ANU843 that constitutively overproduces the CelC2 enzyme has increased competitiveness in occupying aberrant nodule-like root structures on clover that are inefficient in nitrogen fixation. This aberrant symbiotic phenotype involves an extensive uncontrolled degradation of the host cell walls restricted to the expected infection sites at tips of deformed root hairs and significantly enlarged infection droplets at termini of wider IT within the nodule infection zone. Furthermore, signs of elevated plant host defense as indicated by reactive oxygen species production in root tissues were more evident during infection by the recombinant strain than its wild-type parent. Our data further support the role of the rhizobial CelC2 cell wall-degrading enzyme in primary infection, and show evidence of its importance in secondary symbiotic infection and tight regulation of its production to establish an effective nitrogen-fixing root nodule symbiosis.


Assuntos
Parede Celular/metabolismo , Celulase/biossíntese , Medicago/microbiologia , Fixação de Nitrogênio/genética , Rhizobium leguminosarum/enzimologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Medicago/genética , Medicago/crescimento & desenvolvimento , Medicago/metabolismo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/fisiologia , Nódulos Radiculares de Plantas/metabolismo
14.
mBio ; 13(1): e0357621, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164560

RESUMO

The rhizosphere and rhizoplane are nutrient-rich but selective environments for the root microbiome. Here, we deciphered a posttranscriptional network regulated by the homologous trans-small RNAs (sRNAs) AbcR1 and AbcR2, which rewire the metabolism of the nitrogen-fixing α-rhizobium Sinorhizobium meliloti during preinfection stages of symbiosis with its legume host alfalfa. The LysR-type regulator LsrB, which transduces the cell redox state, is indispensable for AbcR1 expression in actively dividing bacteria, whereas the stress-induced transcription of AbcR2 depends on the alternative σ factor RpoH1. MS2 affinity purification coupled with RNA sequencing unveiled exceptionally large and overlapping AbcR1/2 mRNA interactomes, jointly representing ⁓6% of the S. meliloti protein-coding genes. Most mRNAs encode transport/metabolic proteins whose translation is silenced by base pairing to two distinct anti-Shine Dalgarno motifs that function independently in both sRNAs. A metabolic model-aided analysis of the targetomes predicted changes in AbcR1/2 expression driven by shifts in carbon/nitrogen sources, which were confirmed experimentally. Low AbcR1/2 levels in some defined media anticipated overexpression growth phenotypes linked to the silencing of specific mRNAs. As a proof of principle, we confirmed AbcR1/2-mediated downregulation of the l-amino acid AapQ permease. AbcR1/2 interactomes are well represented in rhizosphere-related S. meliloti transcriptomic signatures. Remarkably, a lack of AbcR1 specifically compromised the ability of S. meliloti to colonize the root rhizoplane. The AbcR1 regulon likely ranks the utilization of available substrates to optimize metabolism, thus conferring on S. meliloti an advantage for efficient rhizosphere/rhizoplane colonization. AbcR1 regulation is predicted to be conserved in related α-rhizobia, which opens unprecedented possibilities for engineering highly competitive biofertilizers. IMPORTANCE Nitrogen-fixing root nodule symbioses between rhizobia and legume plants provide more than half of the combined nitrogen incorporated annually into terrestrial ecosystems, rendering plant growth independent of environmentally unfriendly chemical fertilizers. The success of symbiosis depends primarily on the capacity of rhizobia to establish competitive populations in soil and rhizosphere environments. Here, we provide insights into the regulation and architecture of an extensive RNA posttranscriptional network that fine-tunes the metabolism of the alfalfa symbiont S. meliloti, thereby enhancing the ability of this beneficial bacterium to colonize nutrient-rich but extremely selective niches, such as the rhizosphere of its host plant. This pervasive RNA regulation of metabolism is a major adaptive mechanism, predicted to operate in diverse rhizobial species. Because RNA regulation relies on modifiable base-pairing interactions, our findings open unexplored avenues for engineering the legumes rhizobiome within sustainable agricultural practices.


Assuntos
Rhizobium , Sinorhizobium meliloti , RNA/metabolismo , Simbiose , Rhizobium/genética , Nitrogênio/metabolismo , Ecossistema , Medicago sativa/microbiologia , RNA Mensageiro/metabolismo , Sinorhizobium meliloti/genética
15.
BMC Microbiol ; 10: 71, 2010 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-20205931

RESUMO

BACKGROUND: The bacterial Hfq protein is able to interact with diverse RNA molecules, including regulatory small non-coding RNAs (sRNAs), and thus it is recognized as a global post-transcriptional regulator of gene expression. Loss of Hfq has an extensive impact in bacterial physiology which in several animal pathogens influences virulence. Sinorhizobium meliloti is a model soil bacterium known for its ability to establish a beneficial nitrogen-fixing intracellular symbiosis with alfalfa. Despite the predicted general involvement of Hfq in the establishment of successful bacteria-eukaryote interactions, its function in S. meliloti has remained unexplored. RESULTS: Two independent S. meliloti mutants, 2011-3.4 and 1021Deltahfq, were obtained by disruption and deletion of the hfq gene in the wild-type strains 2011 and 1021, respectively, both exhibiting similar growth defects as free-living bacteria. Transcriptomic profiling of 1021Deltahfq revealed a general down-regulation of genes of sugar transporters and some enzymes of the central carbon metabolism, whereas transcripts specifying the uptake and metabolism of nitrogen sources (mainly amino acids) were more abundant than in the wild-type strain. Proteomic analysis of the 2011-3.4 mutant independently confirmed these observations. Symbiotic tests showed that lack of Hfq led to a delayed nodulation, severely compromised bacterial competitiveness on alfalfa roots and impaired normal plant growth. Furthermore, a large proportion of nodules (55%-64%) elicited by the 1021Deltahfq mutant were non-fixing, with scarce content in bacteroids and signs of premature senescence of endosymbiotic bacteria. RT-PCR experiments on RNA from bacteria grown under aerobic and microoxic conditions revealed that Hfq contributes to regulation of nifA and fixK1/K2, the genes controlling nitrogen fixation, although the Hfq-mediated regulation of fixK is only aerobiosis dependent. Finally, we found that some of the recently identified S. meliloti sRNAs co-inmunoprecipitate with a FLAG-epitope tagged Hfq protein. CONCLUSIONS: Our results support that the S. meliloti RNA chaperone Hfq contributes to the control of central metabolic pathways in free-living bacteria and influences rhizospheric competence, survival of the microsymbiont within the nodule cells and nitrogen fixation during the symbiotic interaction with its legume host alfalfa. The identified S. meliloti Hfq-binding sRNAs are predicted to participate in the Hfq regulatory network.


Assuntos
Carbono/metabolismo , Fator Proteico 1 do Hospedeiro/fisiologia , Medicago sativa/microbiologia , Sinorhizobium meliloti/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutação/genética , Fixação de Nitrogênio , Fenótipo , RNA não Traduzido/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Alinhamento de Sequência , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Microorganisms ; 8(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164262

RESUMO

Small non-coding RNAs (sRNAs) are ubiquitous components of bacterial adaptive regulatory networks underlying stress responses and chronic intracellular infection of eukaryotic hosts. Thus, sRNA-mediated regulation of gene expression is expected to play a major role in the establishment of mutualistic root nodule endosymbiosis between nitrogen-fixing rhizobia and legume plants. However, knowledge about this level of genetic regulation in this group of plant-interacting bacteria is still rather scarce. Here, we review insights into the rhizobial non-coding transcriptome and sRNA-mediated post-transcriptional regulation of symbiotic relevant traits such as nutrient uptake, cell cycle, quorum sensing, or nodule development. We provide details about the transcriptional control and protein-assisted activity mechanisms of the functionally characterized sRNAs involved in these processes. Finally, we discuss the forthcoming research on riboregulation in legume symbionts.

17.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919182

RESUMO

We report here the complete genome sequence of the salt-tolerant Sinorhizobium meliloti strain AK21, isolated from nodules of Medicago sativa L. subsp. ambigua inhabiting the northern Aral Sea Region. This genome (7.36 Mb) consists of a chromosome and four accessory plasmids, two of which are the symbiotic megaplasmids pSymA and pSymB.

18.
Nucleic Acids Res ; 35(1): 214-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17158161

RESUMO

RmInt1 is a self-splicing and mobile group II intron initially identified in the bacterium Sinorhizobium meliloti, which encodes a reverse transcriptase-maturase (Intron Encoded Protein, IEP) lacking the C-terminal DNA binding (D) and DNA endonuclease domains (En). RmInt1 invades cognate intronless homing sites (ISRm2011-2) by a mechanism known as retrohoming. This work describes how the RmInt1 intron spreads in the S.meliloti genome upon acquisition by conjugation. This process was revealed by using the wild-type intron RmInt1 and engineered intron-donor constructs based on ribozyme coding sequence (DeltaORF)-derivatives with higher homing efficiency than the wild-type intron. The data demonstrate that RmInt1 propagates into the S.meliloti genome primarily by retrohoming with a strand bias related to replication of the chromosome and symbiotic megaplasmids. Moreover, we show that when expressed in trans from a separate plasmid, the IEP is able to mobilize genomic DeltaORF ribozymes that afterward displayed wild-type levels of retrohoming. Our results contribute to get further understanding of how group II introns spread into bacterial genomes in nature.


Assuntos
Conjugação Genética , Genoma Bacteriano , Íntrons , Sinorhizobium meliloti/genética , Proteínas de Bactérias/química , Sequência de Bases , Teste de Complementação Genética , Engenharia Genética , Dados de Sequência Molecular , RNA Bacteriano/química , RNA Catalítico/química , Retroelementos
19.
Methods Mol Biol ; 1734: 277-295, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29288462

RESUMO

High-throughput transcriptome profiling (RNAseq) has uncovered large and heterogeneous populations of small noncoding RNA species (sRNAs) with potential regulatory roles in bacteria. A large fraction of sRNAs are differentially regulated and rely on protein-assisted antisense interactions to trans-encoded target mRNAs to fine-tune posttranscriptional reprogramming of gene expression in response to external cues. However, annotation and function of sRNAs are still largely overlooked in nonmodel bacteria with complex lifestyles. Here, we describe experimental protocols successfully applied for the accurate annotation, expression profiling and target mRNA identification of trans-acting sRNAs in the nitrogen-fixing α-rhizobium Sinorhizobium meliloti. The protocols presented here can be similarly applied for the characterization of trans-sRNAs in genetically tractable α-proteobacteria of agronomical or clinical relevance interacting with eukaryotic hosts.


Assuntos
Regulação Bacteriana da Expressão Gênica , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Pequeno RNA não Traduzido/genética , Simbiose , Expressão Gênica , Genes Reporter , RNA Bacteriano , RNA Mensageiro/genética , Reprodutibilidade dos Testes
20.
Front Genet ; 9: 350, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210532

RESUMO

Members of the ribonuclease (RNase) III family of enzymes are metal-dependent double-strand specific endoribonucleases. They are ubiquitously found and eukaryotic RNase III-like enzymes include Dicer and Drosha, involved in RNA processing and RNA interference. In this work, we have addressed the primary characterization of RNase III from the symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti. The S. meliloti rnc gene does encode an RNase III-like protein (SmRNase III), with recognizable catalytic and double-stranded RNA (dsRNA)-binding domains that clusters in a branch with its α-proteobacterial counterparts. Purified SmRNase III dimerizes, is active at neutral to alkaline pH and behaves as a strict metal cofactor-dependent double-strand endoribonuclease, with catalytic features distinguishable from those of the prototypical member of the family, the Escherichia coli ortholog (EcRNase III). SmRNase III prefers Mn2+ rather than Mg2+ as metal cofactor, cleaves the generic structured R1.1 substrate at a site atypical for RNase III cleavage, and requires higher cofactor concentrations and longer dsRNA substrates than EcRNase III for optimal activity. Furthermore, the ultraconserved E125 amino acid was shown to play a major role in the metal-dependent catalysis of SmRNase III. SmRNase III degrades endogenous RNA substrates of diverse biogenesis with different efficiency, and is involved in the maturation of the 23S rRNA. SmRNase III loss-of-function neither compromises viability nor alters morphology of S. meliloti cells, but influences growth, nodulation kinetics, the onset of nitrogen fixation and the overall symbiotic efficiency of this bacterium on the roots of its legume host, alfalfa, which ultimately affects plant growth. Our results support an impact of SmRNase III on nodulation and symbiotic nitrogen fixation in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA