RESUMO
Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.
Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Mutação/genética , Translocação Genética/genética , Algoritmos , Neoplasias da Mama/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Análise Mutacional de DNA , Exoma/genética , Feminino , Fusão Gênica/genética , Humanos , Proteínas de Membrana/genética , México , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , VietnãRESUMO
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call 'First American'. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America.
Assuntos
Emigração e Imigração/história , Indígenas Norte-Americanos/genética , Indígenas Norte-Americanos/história , Filogenia , América , Ásia , Análise por Conglomerados , Emigração e Imigração/estatística & dados numéricos , Fluxo Gênico , Genética Populacional , História Antiga , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , SibériaRESUMO
ABCD3 is one of three ATP-binding cassette (ABC) transporters present in the peroxisomal membrane catalyzing ATP-dependent transport of substrates for metabolic pathways localized in peroxisomes. So far, the precise function of ABCD3 is not known. Here, we report the identification of the first patient with a defect of ABCD3. The patient presented with hepatosplenomegaly and severe liver disease and showed a striking accumulation of peroxisomal C27-bile acid intermediates in plasma. Investigation of peroxisomal parameters in skin fibroblasts revealed a reduced number of enlarged import-competent peroxisomes. Peroxisomal beta-oxidation of C26:0 was normal, but beta-oxidation of pristanic acid was reduced. Genetic analysis revealed a homozygous deletion at the DNA level of 1758bp, predicted to result in a truncated ABCD3 protein lacking the C-terminal 24 amino acids (p.Y635NfsX1). Liver disease progressed and the patient required liver transplantation at 4 years of age but expired shortly after transplantation. To corroborate our findings in the patient, we studied a previously generated Abcd3 knockout mouse model. Abcd3-/- mice accumulated the branched chain fatty acid phytanic acid after phytol loading. In addition, analysis of bile acids revealed a reduction of C24 bile acids, whereas C27-bile acid intermediates were significantly increased in liver, bile and intestine of Abcd3-/- mice. Thus, both in the patient and in Abcd3-/- mice, there was evidence of a bile acid biosynthesis defect. In conclusion, our studies show that ABCD3 is involved in transport of branched-chain fatty acids and C27 bile acids into the peroxisome and that this is a crucial step in bile acid biosynthesis.
Assuntos
Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares/biossíntese , Hepatopatias/metabolismo , Peroxissomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Ácidos Graxos/metabolismo , Feminino , Humanos , Hepatopatias/genética , Masculino , Camundongos , Camundongos Knockout , Peroxissomos/genéticaRESUMO
The genomics revolution has generated an unprecedented number of assets to propel innovation. Initial availability of genomics-based applications show a significant potential to contribute addressing global challenges, such as human health, food security, alternative sources of energies, and environmental sustainability. In the last years, most developed and emerging nations have established bioeconomy agendas where genomics plays a major role to meet their local needs. Genomic medicine is one of the most visible areas where genomics innovation is likely to contribute to a more individualized, predictive, and preventive medical practice. Examples in agriculture, dairy and beef, fishery, aquaculture, and forests industries include the effective selection of genetic variants associated to traits of economic value. Some, in addition to producing more and better foods, already represent an important increase in revenues to their respective industries. It is reasonable to predict that genomics applications will lead to a paradigm shift in our ability to ease significant health, economic, and social burdens. However, to successfully benefit from genomics innovations, it is imperative to address a number of hurdles related to generating robust scientific evidence, developing lower-cost sequencing technologies, effective bioinformatics, as well as sensitive ethical, economical, environmental, legal, and social aspects associated with the development and use of genomics innovations.
Assuntos
Genômica , Agricultura , Comércio , Atenção à Saúde/métodos , Atenção à Saúde/normas , Atenção à Saúde/tendências , Indústria Alimentícia , Genômica/métodos , Genômica/normas , Genômica/tendências , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Invenções , Medicina de PrecisãoRESUMO
Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R² > 0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.
Assuntos
Indígena Americano ou Nativo do Alasca/genética , População Negra/genética , Marcadores Genéticos , Dinâmica Populacional , População Branca/genética , Genoma Humano , Humanos , América LatinaRESUMO
This is a historical moment on the path to genomic medicine - the point at which theory is about to be translated into practice. We have previously described human genome variation studies taking place in Mexico, India, Thailand, and South Africa. Such investments into science and technology will enable these countries to embark on the path to the medical and health applications of genomics, and to benefit economically. Here we provide a perspective on the challenges and opportunities facing these and other countries in the developing world as they begin to harness genomics for the benefit of their populations.
Assuntos
Atenção à Saúde , Países em Desenvolvimento , Genômica , Humanos , FarmacogenéticaAssuntos
Agricultura , Conservação dos Recursos Naturais , Economia/tendências , Genômica , Alimentos Marinhos/economia , Agricultura/economia , Agricultura/métodos , Agricultura/tendências , Animais , Bovinos/genética , China , Produtos Agrícolas , Europa (Continente) , Genômica/métodos , Genômica/tendências , Efeito Estufa , Humanos , Indústrias/economia , Indústrias/tendências , Carne , Opinião Pública , Biologia Sintética/métodos , Biologia Sintética/tendências , Estados UnidosRESUMO
Mexico is developing the basis for genomic medicine to improve healthcare of its population. The extensive study of genetic diversity and linkage disequilibrium structure of different populations has made it possible to develop tagging and imputation strategies to comprehensively analyze common genetic variation in association studies of complex diseases. We assessed the benefit of a Mexican haplotype map to improve identification of genes related to common diseases in the Mexican population. We evaluated genetic diversity, linkage disequilibrium patterns, and extent of haplotype sharing using genomewide data from Mexican Mestizos from regions with different histories of admixture and particular population dynamics. Ancestry was evaluated by including 1 Mexican Amerindian group and data from the HapMap. Our results provide evidence of genetic differences between Mexican subpopulations that should be considered in the design and analysis of association studies of complex diseases. In addition, these results support the notion that a haplotype map of the Mexican Mestizo population can reduce the number of tag SNPs required to characterize common genetic variation in this population. This is one of the first genomewide genotyping efforts of a recently admixed population in Latin America.
Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica , Indígenas Norte-Americanos/genética , Medicina , Alelos , Haplótipos , Humanos , MéxicoRESUMO
Seed germination is a critical developmental period for plant propagation. Information regarding gene expression within this important period is relevant for understanding the main biochemical processes required for successful germination, particularly in maize, one of the most important cereals in the world. The present research focuses on the global microarray analysis of differential gene expression between quiescent and germinated maize embryo stages. This analysis revealed that a large number of mRNAs stored in the quiescent embryonic axes (QEAs) were differentially regulated during germination in the 24 h germinated embryonic axes (GEAs). These genes belong to 14 different functional categories and most of them correspond to metabolic processes, followed by transport, transcription and translation. Interestingly, the expression of mRNAs encoding ribosomal proteins [(r)-proteins], required for new ribosome formation during this fast-growing period, remains mostly unchanged throughout the germination process, suggesting that these genes are not regulated at the transcriptional level during this developmental period. To investigate this issue further, comparative microarray analyses on polysomal mRNAs from growth-stimulated and non-stimulated GEAs were performed. The results revealed that (r)-protein mRNAs accumulate to high levels in polysomes of the growth-stimulated tissues, indicating a translational control mechanism to account for the rapid (r)-protein synthesis observed within this period. Bioinformatic analysis of (r)-protein mRNAs showed that 5' TOP (tract of pyrimidines)-like sequences are present only in the 5'-untranslated region set of up-regulated (r)-protein mRNAs. This overall approach to the germination process allows an in-depth view of molecular changes, enabling a broader understanding of the regulatory mechanisms that occur during this process.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação/genética , Proteínas Ribossômicas/genética , Sementes/genética , Zea mays/embriologia , Zea mays/genética , Regiões 5' não Traduzidas/genética , Sequência de Bases , Biologia Computacional , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta/genética , Germinação/efeitos dos fármacos , Insulina/farmacologia , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/metabolismo , Sementes/efeitos dos fármacos , Fatores de Tempo , Zea mays/efeitos dos fármacosRESUMO
Genomic analysis of breast cancer has allowed the development of new tools for the prediction of recurrence and the response to treatment of this disease. Gene expression profiles allow better tumor classification, identifying tumor subgroups with particular clinical outcomes. New potential molecular targets involved in breast carcinogenesis have also been identified through the analysis of DNA copy number aberrations and microRNA expression patterns. Whole genome association studies have identified genetic variants associated with a higher risk to develop this tumor, providing more information for public health decisions. Progress in DNA sequencing methods will also allow for the analysis of all the genetic alterations present in a tumor. In this review, we describe the current state of genomic research in breast cancer as well as how these findings are being translated into clinical practice, contributing to development of personalized medicine.
Assuntos
Neoplasias da Mama/genética , Genômica , Neoplasias da Mama/classificação , DNA de Neoplasias/genética , Feminino , Predisposição Genética para Doença , Humanos , Medição de RiscoRESUMO
MOTIVATION: The identification of risk-associated genetic variants in common diseases remains a challenge to the biomedical research community. It has been suggested that common statistical approaches that exclusively measure main effects are often unable to detect interactions between some of these variants. Detecting and interpreting interactions is a challenging open problem from the statistical and computational perspectives. Methods in computing science may improve our understanding on the mechanisms of genetic disease by detecting interactions even in the presence of very low heritabilities. RESULTS: We have implemented a method using Genetic Programming that is able to induce a Decision Tree to detect interactions in genetic variants. This method has a cross-validation strategy for estimating classification and prediction errors and tests for consistencies in the results. To have better estimates, a new consistency measure that takes into account interactions and can be used in a genetic programming environment is proposed. This method detected five different interaction models with heritabilities as low as 0.008 and with prediction errors similar to the generated errors. AVAILABILITY: Information on the generated data sets and executable code is available upon request.
Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Técnicas de Apoio para a Decisão , Epistasia Genética , Predisposição Genética para Doença/genética , Genética Populacional , Modelos Genéticos , Animais , Testes Genéticos/métodos , Humanos , PenetrânciaRESUMO
A regulatory single nucleotide polymorphism (SNP) PD1.3G/A located on programmed cell death 1 (PDCD1) gene, was shown to be involved in susceptibility to systemic lupus erythematosus (SLE) in Swedish, European American, and Mexican cases. However, association to childhood-onset SLE has not been analyzed. The aim of this study was to investigate the association of PDCD1 polymorphisms and haplotypes with susceptibility to childhood-onset SLE in Mexican population. Three PDCD1 SNPs, PD1.3G/A, PD1.5C/T, PD1.6G/A, were analyzed in 250 childhood-onset SLE Mexican patients and 355 healthy controls in a case-control association study. Polymorphisms were genotyped by TaqMan technology. Stratification analysis was performed on the SLE cohort to investigate the SNP association with renal disorder. In addition, haplotypes were constructed with these three SNPs. The PD1.3A allele was significantly associated to childhood-onset SLE (P=0.0019, odds ratio (OR) 2.73, 95% confidence interval (95% CI) 1.35-5.56). The other PDCD1 SNPs did not show association. A total of 155 patients (62%) had nephritis, and no association was observed with PDCD1 SNPs. The ACG haplotype (PD1.3A, PD1.5C, PD1.6G) included almost all PD1.3A alleles, and it was more frequent in SLE patients (5.5%) than in controls (2.1%) (P=0.003; OR 2.73, 95% CI 1.37-5.46). The haplotype structure in Mexican controls was significantly different from those reported in Spanish and Swedish. Our results support association of the PD1.3A SNP to susceptibility of childhood-onset SLE in Mexican population and does not show association to lupus nephritis in this age group.
Assuntos
Antígenos CD/genética , Proteínas Reguladoras de Apoptose/genética , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Polimorfismo Genético , Idade de Início , Estudos de Casos e Controles , Criança , Feminino , Humanos , Lúpus Eritematoso Sistêmico/epidemiologia , Nefrite Lúpica/genética , Masculino , Receptor de Morte Celular Programada 1RESUMO
Zellweger syndrome is a lethal neurological disorder characterized by severe defects in peroxisomal protein import. The resulting defects in peroxisome metabolism and the accumulation of peroxisomal substrates are thought to cause the other Zellweger syndrome phenotypes, including neuronal migration defects, hypotonia, a developmental delay, and neonatal lethality. These phenotypes are also manifested in mouse models of Zellweger syndrome generated by disruption of the PEX5 or PEX2 gene. Here we show that mice lacking peroxisomal membrane protein PEX11 beta display several pathologic features shared by these mouse models of Zellweger syndrome, including neuronal migration defects, enhanced neuronal apoptosis, a developmental delay, hypotonia, and neonatal lethality. However, PEX11 beta deficiency differs significantly from Zellweger syndrome and Zellweger syndrome mice in that it is not characterized by a detectable defect in peroxisomal protein import and displays only mild defects in peroxisomal fatty acid beta-oxidation and peroxisomal ether lipid biosynthesis. These results demonstrate that the neurological pathologic features of Zellweger syndrome can occur without peroxisomal enzyme mislocalization and challenge current models of Zellweger syndrome pathogenesis.
Assuntos
Proteínas de Membrana/genética , Neurônios/patologia , Peroxissomos/metabolismo , Animais , Movimento Celular , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Retardo do Crescimento Fetal/genética , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias/ultraestrutura , Hipotonia Muscular/genética , Transporte Proteico , Síndrome de Zellweger/metabolismo , Síndrome de Zellweger/patologiaRESUMO
The PEX11 peroxisomal membrane proteins promote peroxisome division in multiple eukaryotes. As part of our effort to understand the molecular and physiological functions of PEX11 proteins, we disrupted the mouse PEX11alpha gene. Overexpression of PEX11alpha is sufficient to promote peroxisome division, and a class of chemicals known as peroxisome proliferating agents (PPAs) induce the expression of PEX11alpha and promote peroxisome division. These observations led to the hypothesis that PPAs induce peroxisome abundance by enhancing PEX11alpha expression. The phenotypes of PEX11alpha(-/-) mice indicate that this hypothesis remains valid for a novel class of PPAs that act independently of peroxisome proliferator-activated receptor alpha (PPARalpha) but is not valid for the classical PPAs that act as activators of PPARalpha. Furthermore, we find that PEX11alpha(-/-) mice have normal peroxisome abundance and that cells lacking both PEX11alpha and PEX11beta, a second mammalian PEX11 gene, have no greater defect in peroxisome abundance than do cells lacking only PEX11beta. Finally, we report the identification of a third mammalian PEX11 gene, PEX11gamma, and show that it too encodes a peroxisomal protein.
Assuntos
Proteínas de Membrana/genética , Proliferadores de Peroxissomos/farmacologia , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Fenilbutiratos/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Dieta , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Marcação de Genes , Fígado/citologia , Fígado/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Oxirredução , Proliferadores de Peroxissomos/administração & dosagem , Peroxissomos/ultraestrutura , Fenótipo , Filogenia , Plasmalogênios/metabolismo , Alinhamento de Sequência , Distribuição TecidualRESUMO
ALDP, ALDPR, PMP70 and PMP70R are half ATP-binding cassette (ABC) transporters of the mammalian peroxisomal membrane. By analogy with other members of this family, it is assumed that peroxisomal ABC transporters must dimerize to become functional units. However, not much is known regarding the type of dimers (i.e., homodimers and/or heterodimers) that are formed in vivo under normal expression conditions. In this work, we have characterized the quaternary structure of mouse liver PMP70 and ALDP. The PMP70 protein complex was purified to apparent homogeneity using a two-step purification protocol. The ALDP-containing protein complex was characterized by preparative immunoprecipitation experiments. In both cases, no evidence for the existence of heteromeric interactions or for the presence of accessory proteins in these ABC transporter protein complexes could be obtained. Our data indicate that the majority (if not all) of mouse liver PMP70 and ALDP are homomeric proteins.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Animais , Digitonina/química , Eletroforese em Gel de Poliacrilamida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between subcontinental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide.
Assuntos
Variação Genética , Indígenas Norte-Americanos/genética , Americanos Mexicanos/genética , População/genética , População Negra/genética , Genoma Humano , Humanos , México , População Branca/genéticaRESUMO
microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.
Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , RNA Neoplásico/genética , Adulto , Idoso , Mama/metabolismo , Neoplasias da Mama/metabolismo , Biologia Computacional , Sequência Conservada , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Oncogenes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismoRESUMO
The angiotensinogen gene locus has been associated with essential hypertension in most populations analyzed to date. Increased plasma angiotensinogen levels have been proposed as an underlying cause of essential hypertension in whites; however, differences in the genetic regulation of plasma angiotensinogen levels have also been reported for other populations. The aim of this study was to analyze the relationship between angiotensinogen gene polymorphisms and haplotypes with plasma angiotensinogen levels and the risk of essential hypertension in the Mexican population. We genotyped 9 angiotensinogen gene polymorphisms in 706 individuals. Four polymorphisms, A-6, C4072, C6309, and G12775, were associated with increased risk, and the strongest association was found for the C6309 allele (χ(2)=23.9; P=0.0000009), which resulted in an odds ratio of 3.0 (95% CI: 1.8-4.9; P=0.000006) in the recessive model. Two polymorphisms, A-20C (P=0.003) and C3389T (P=0.0001), were associated with increased plasma angiotensinogen levels but did not show association with essential hypertension. The haplotypes H1 (χ(2)=8.1; P=0.004) and H5 (χ(2)=5.1; P=0.02) were associated with essential hypertension. Using phylogenetic analysis, we found that haplotypes 1 and 5 are the human ancestral haplotypes. Our results suggest that the positive association between angiotensinogen gene polymorphisms and haplotypes with essential hypertension is not simply explained by an increase in plasma angiotensinogen concentration. Complex interactions between risk alleles suggest that these haplotypes act as "superalleles."
Assuntos
Indígena Americano ou Nativo do Alasca/genética , Angiotensinogênio/genética , Genótipo , Haplótipos/genética , Hipertensão/etnologia , Hipertensão/genética , Fenótipo , Idoso , Idoso de 80 Anos ou mais , Alelos , Indígena Americano ou Nativo do Alasca/etnologia , Angiotensinogênio/sangue , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/genética , Humanos , Hipertensão/sangue , Masculino , México , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Fatores de RiscoRESUMO
Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression.