Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 114(7): 2860-2870, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094904

RESUMO

High-risk neuroblastoma (HR-NB) is an aggressive childhood cancer that responds poorly to currently available therapies and is associated with only about a 50% 5-year survival rate. MYCN amplification is a critical driver of these aggressive tumors, but so far there have not been any approved treatments to effectively treat HR-NB by targeting MYCN or its downstream effectors. Thus, the identification of novel molecular targets and therapeutic strategies to treat children diagnosed with HR-NB represents an urgent unmet medical need. Here, we conducted a targeted siRNA screening and identified TATA box-binding protein-associated factor RNA polymerase I subunit D, TAF1D, as a critical regulator of the cell cycle and proliferation in HR-NB cells. Analysis of three independent primary NB cohorts determined that high TAF1D expression correlated with MYCN-amplified, high-risk disease and poor clinical outcomes. TAF1D knockdown more robustly inhibited cell proliferation in MYCN-amplified NB cells compared with MYCN-non-amplified NB cells, as well as suppressed colony formation and inhibited tumor growth in a xenograft mouse model of MYCN-amplified NB. RNA-seq analysis revealed that TAF1D knockdown downregulates the expression of genes associated with the G2/M transition, including the master cell-cycle regulator, cell-cycle-dependent kinase 1 (CDK1), resulting in cell-cycle arrest at G2/M. Our findings demonstrate that TAF1D is a key oncogenic regulator of MYCN-amplified HR-NB and suggest that therapeutic targeting of TAF1D may be a viable strategy to treat HR-NB patients by blocking cell-cycle progression and the proliferation of tumor cells.


Assuntos
Neuroblastoma , Humanos , Animais , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/patologia , Proliferação de Células/genética , Divisão Celular , Fase G2 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Clin Exp Hypertens ; 43(2): 142-150, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33070656

RESUMO

OBJECTIVE: To explore the effect of renal sympathetic denervation (RSD) on left ventricle hypertrophy and the Raf/MEK/ERK signaling pathway in spontaneously hypertensive rats (SHRs). METHODS: SHRs were divided into SHR, SHR + Sham, SHR + RSD and SHR + U0126 groups, with WKY rats as the baseline controls. The blood pressure of rats was observed, while myocardial fibrosis was evaluated through Masson staining. Thereafter, real-time quantitative polymerase chain reaction (qRT-PCR) was carried out to determine the levels of myocardial-hypertrophy-related markers, and Western blotting was used to measure the activity of the Raf/MEK/ERK signaling pathway. RESULTS: In comparison with the WKY group, significant increases were observed in the systolic pressure and diastolic pressure of rats from the other four groups at different time points after surgery. In addition, rats in these groups had obvious increases in LVMI, renal NE and IVSd and decreases in LVEDd, LVEF and LVFS. In addition, the CVF of myocardial tissues was increased, with the upregulation of ANP, BNP and ß-MHC and the downregulation of α-MHC. For the activity of the Raf/MEK/ERK signaling pathway, the levels of p-Raf/Raf, p-MEK/MEK and p-ERK1/2/ERK1/2 were all remarkably elevated (all P < .05). Further comparison with the SHR group showed that the above indexes in the rats were significantly improved in the RSD group and SHR + U0126 group (all P < .05). CONCLUSION: RSD may decrease blood pressure, mitigate hypertension-induced left ventricle hypertrophy and improve cardiac function efficiently in SHRs via the suppression of the Raf/MEK/ERK signaling pathway.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Rim/inervação , Miocárdio , Simpatectomia/métodos , Animais , Biomarcadores/metabolismo , Fibrose/prevenção & controle , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/cirurgia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Sistema de Sinalização das MAP Quinases , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Endogâmicos SHR , Quinases raf/metabolismo
3.
Nucleic Acids Res ; 46(D1): D937-D943, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29106618

RESUMO

Rare diseases affect over a hundred million people worldwide, most of these patients are not accurately diagnosed and effectively treated. The limited knowledge of rare diseases forms the biggest obstacle for improving their treatment. Detailed clinical phenotyping is considered as a keystone of deciphering genes and realizing the precision medicine for rare diseases. Here, we preset a standardized system for various types of rare diseases, called encyclopedia of Rare disease Annotations for Precision Medicine (eRAM). eRAM was built by text-mining nearly 10 million scientific publications and electronic medical records, and integrating various data in existing recognized databases (such as Unified Medical Language System (UMLS), Human Phenotype Ontology, Orphanet, OMIM, GWAS). eRAM systematically incorporates currently available data on clinical manifestations and molecular mechanisms of rare diseases and uncovers many novel associations among diseases. eRAM provides enriched annotations for 15 942 rare diseases, yielding 6147 human disease related phenotype terms, 31 661 mammalians phenotype terms, 10,202 symptoms from UMLS, 18 815 genes and 92 580 genotypes. eRAM can not only provide information about rare disease mechanism but also facilitate clinicians to make accurate diagnostic and therapeutic decisions towards rare diseases. eRAM can be freely accessed at http://www.unimd.org/eram/.


Assuntos
Curadoria de Dados , Bases de Dados Factuais , Medicina de Precisão , Doenças Raras , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Fenótipo , Doenças Raras/classificação , Doenças Raras/diagnóstico , Doenças Raras/genética , Especificidade da Espécie , Terminologia como Assunto
4.
Nucleic Acids Res ; 46(D1): D977-D983, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29126123

RESUMO

There is a significant number of children around the world suffering from the consequence of the misdiagnosis and ineffective treatment for various diseases. To facilitate the precision medicine in pediatrics, a database namely the Pediatric Disease Annotations & Medicines (PedAM) has been built to standardize and classify pediatric diseases. The PedAM integrates both biomedical resources and clinical data from Electronic Medical Records to support the development of computational tools, by which enables robust data analysis and integration. It also uses disease-manifestation (D-M) integrated from existing biomedical ontologies as prior knowledge to automatically recognize text-mined, D-M-specific syntactic patterns from 774 514 full-text articles and 8 848 796 abstracts in MEDLINE. Additionally, disease connections based on phenotypes or genes can be visualized on the web page of PedAM. Currently, the PedAM contains standardized 8528 pediatric disease terms (4542 unique disease concepts and 3986 synonyms) with eight annotation fields for each disease, including definition synonyms, gene, symptom, cross-reference (Xref), human phenotypes and its corresponding phenotypes in the mouse. The database PedAM is freely accessible at http://www.unimd.org/pedam/.


Assuntos
Bases de Dados Factuais , Doença , Animais , Criança , Diagnóstico , Doença/genética , Tratamento Farmacológico , Genótipo , Humanos , Camundongos , Fenótipo
5.
Biochem Biophys Res Commun ; 506(3): 674-679, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376994

RESUMO

Urothelial Carcinoma Antigen 1 (UCA1) is a cell and tissue specific long non-coding RNA (lncRNA) associated with the tumorigenesis and invasion of bladder cancer. However, the mechanism driving the over-transcription of UCA1 in bladder cancer cells remains unclear. It has been reported that C/EBPß has a significant role of regulation in tumorigenesis. Here we report that the expression of UCA1 was dramatically inhibited in 5637 cells with C/EBPß down-regulation. Additionally, the function tests indicated that C/EBPß could promote 5637 cells growth and colony formation by inducing the expression level of UCA1. These data suggest that C/EBPß was involved in transcriptional regulation of UCA1 and contributed substantially to its high expression and proliferation promoting in bladder cancer cells.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , RNA Longo não Codificante/genética , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Longo não Codificante/metabolismo
6.
Cancer Cell Int ; 18: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29311760

RESUMO

BACKGROUND: Neuroblastoma (NB) is the most common malignant tumor originating from the extracranial sympathetic nervous system in children. The molecular mechanisms underlying this disease are complex, and not completely understood. METHODS: Quantitative real-time PCR (qRT-PCR) was applied to quantify the expression of miR-20a-5p and its target gene ATG7 in clinical NB tissues. The biological function of miR-20a-5p and ATG7 in SH-SY5Y cells was investigated through in vitro studies (Real-Time cell kinetic analyzer, colony formation assay, caspase-Glo 3/7 assay and western blotting). The luciferase reporter assay was conducted to verify the biological relationship between miR-20a-5p and ATG7. RESULTS: Here we found that miR-20a-5p expression was significantly downregulated whereas its target autophagy-related gene 7 (ATG7) was increased along with clinical staging of NB progression. Correlation analysis showed that miR-20a-5p had a negative correlation trend with ATG7. In SH-SY5Y cells, forced expression of miR-20a-5p suppressed ATG7 expression, autophagy initiation and cellular proliferation while promoted apoptosis, suggesting a potential association between miR-20a-5p and ATG7. Further bioinformatic target prediction combined with protein expression and luciferase reporter assay verified that miR-20a-5p inhibited ATG7 by directly binding to its 3'-UTR, confirming the involvement of miR-20a-5p in the regulation of ATG7 in NB. CONCLUSIONS: These results clarified that miR-20a-5p inhibited cell proliferation and promoted apoptosis through negative regulation of ATG7 and thus autophagy suppression in SH-SY5Y cells. Therefore, defining the context-specific roles of autophagy in NB and regulatory mechanisms involved will be critical for developing autophagy-targeted therapeutics against NB. Both miR-20a-5p and ATG7 would be potential therapeutic targets for future NB treatment.

7.
Cancer Cell Int ; 18: 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449788

RESUMO

BACKGROUND: Papillary thyroid carcinoma (PTC) is one of the most frequent malignancies of the endocrine system, whose mechanisms of pathogenesis, progression and prognosis are still far from being clearly elucidated. Despite an increasing body of evidences highlights ribosome biogenesis regulator homolog (RRS1) as a ribosome biogenesis protein in yeast and plants, little is known about human RRS1 function. METHODS: Proliferation, cell cycle and apoptosis of PTC cells were assessed following the knockdown of RRS1 expression though MTT, colony formation assay, and flow cytometry. Then, transcriptome profiling was conducted to explore pathway changes after RRS1 silencing in PTC cells. Receiver operating characteristic curve and Youden's index were performed in twenty-four thyroid carcinoma samples to assess their potential clinical diagnostic value. RESULTS: Firstly, we found that silencing RRS1 significantly reduced cell proliferation, inhibited cell cycle, and promoted apoptosis in PTC cell line. The result also showed that knock-down of RRS1 could up-regulate genes involving apoptosis and metabolism, while, down-regulate genes relative to cell proliferation and blood vessel development. Notably, the present study confirmed the diagnostic value of RRS1 for thyroid carcinoma in both children and adults. CONCLUSIONS: In conclusion, these data afford a comprehensive view of a novel function of human RRS1 by promoting cell proliferation and could be a potential indicator for papillary thyroid carcinoma.

8.
Exp Cell Res ; 350(1): 1-8, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27756608

RESUMO

Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that the PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the -851 to -836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Próstata/metabolismo , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Securina/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Securina/metabolismo
9.
Arch Toxicol ; 92(2): 845-858, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29067470

RESUMO

Acetaminophen (APAP) overdose is the leading cause of acute liver failure. Yet the mechanisms underlying adaptive tolerance toward APAP-induced liver injury are not fully understood. To better understand molecular mechanisms contributing to adaptive tolerance to APAP is an underpinning foundation for APAP-related precision medicine. In the current study, the mRNA and microRNA (miRNA) expression profiles derived from next generation sequencing data for APAP-treated (5 and 10 mM) HepaRG cells and controls were analyzed systematically. Putative miRNAs targeting key dysregulated genes involved in APAP hepatotoxicity were selected using in silico prediction algorithms, un-biased gene ontology, and network analyses. Luciferase reporter assays, RNA electrophoresis mobility shift assays, and miRNA pull-down assays were performed to investigate the role of miRNAs affecting the expression of dysregulated genes. Levels of selected miRNAs were measured in serum samples obtained from children with APAP overdose (58.6-559.4 mg/kg) and from healthy controls. As results, 2758 differentially expressed genes and 47 miRNAs were identified. Four of these miRNAs (hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p) suppressed drug metabolizing enzyme (DME) levels involved in APAP-induced liver injury by downregulating HNF1A, HNF4A and NR1I2 expression. Exogenous transfection of these miRNAs into HepaRG cells effectively rescued them from APAP toxicity, as indicated by decreased alanine aminotransferase levels. Importantly, hsa-miR-320a and hsa-miR-877-5p levels were significantly elevated in serum samples obtained from children with APAP overdose compared to health controls. Collectively, these data indicate that hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p suppress DME expression involved in APAP-induced hepatotoxicity and they contribute to an adaptive response in hepatocytes.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Overdose de Drogas/genética , Hepatócitos/efeitos dos fármacos , MicroRNAs/genética , Linhagem Celular , Criança , Feminino , Células HEK293 , Humanos , Masculino , MicroRNAs/sangue , Transfecção
10.
Mediators Inflamm ; 2017: 8481049, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607535

RESUMO

The study is aimed to investigate the pathogenesis underlying the increased prevalence of thyroid nodule (TN) in different levels of metabolic syndrome (MetS) components and analyze the relationships between TN and MetS components. A total of 6,798 subjects, including 2201 patients with TN, were enrolled in this study. Anthropometric, biochemical, thyroid ultrasonographic, and other metabolic parameters were all measured. There was obviously sexual difference in the prevalence of TN (males 26.0%, females 38.5%, resp.). The prevalence of TN in hyperuricemia (45.7% versus 37.4%, P = 0.001), NAFLD (41.2% versus 36.4%, P < 0.05), and MetS (41.4% versus 35.4%, P < 0.001) groups was significantly increased only in females. Insulin resistance [OR = 1.31 (1.15, 1.49)], MetS [OR = 1.18 (1.03, 1.35)], and diabetes [OR = 1.25 (1.06, 1.48)] were all independent risk factors for TN in total subjects, whereas, after stratified analysis of gender, MetS [OR = 1.29, (1.09, 1.53)] and diabetes [OR = 1.47, (1.17, 1.84)] are still strongly and independently associated with the higher risks of TN in female subjects, but not in males. Our results suggest that the components of MetS might associate with the higher risks of TN in women than in men, but further cohort study of this gender disparity in the association between TN and MetS is required.


Assuntos
Síndrome Metabólica/epidemiologia , Idoso , Estudos Transversais , Feminino , Humanos , Resistência à Insulina/fisiologia , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/patologia , Fatores de Risco , Fatores Sexuais , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/patologia
11.
Biochem Biophys Res Commun ; 478(2): 676-82, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498003

RESUMO

MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3'-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53(-/-) cancer cells, in which PLK1 protein was suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage.


Assuntos
Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Regiões 3' não Traduzidas , Células A549 , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , MicroRNAs/metabolismo , Mitose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Quinase 1 Polo-Like
12.
Tumour Biol ; 37(3): 3739-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26468016

RESUMO

With a primary mortality, neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Amplification of the MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog) oncogene is observed in 20-30 % of NB cases, a feature which also characterizes a highly aggressive subtype of the disease. However, the systematic study of association between single nucleotide polymorphisms (SNPs) in MYCN-regulated genes and the risk of NB has not been investigated. In the current study, we scanned a set of 16 SNPs located within known or predicted MYCN binding sites in a cohort of 247 patients of Chinese origin with neuroblastic family tumors, including neuroblastoma (NB), ganglioneuroma (GN), and ganglioneuroblastoma (GNB), and in 290 cancer-free controls to determine whether any of the tested SNPs are associated with neuroblastic family tumors. We found that the rs11669203 G>C polymorphism, located in TGFBR3L promoter, is significantly associated with the risk of NB. Further, we found that this association is site specific to adrenal NB compared to non-adrenal NB. In addition, transcriptome analysis indicated that increased expression of TGFBR3L is strongly correlated with poor survival. The SNP rs11669203 located at the MYCN binding site of TGFBR3L is significantly associated with elevated risk of NB, and abnormal MYCN-regulated TGFBR3L expression may contribute to NB oncogenesis.


Assuntos
Predisposição Genética para Doença/genética , Neuroblastoma/genética , Proteínas Oncogênicas/genética , Polimorfismo de Nucleotídeo Único , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Alelos , Povo Asiático/genética , Pré-Escolar , China , Feminino , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Predisposição Genética para Doença/etnologia , Genótipo , Humanos , Lactente , Desequilíbrio de Ligação , Masculino , Neuroblastoma/etnologia , Regiões Promotoras Genéticas/genética , Fatores de Risco
13.
Cell Death Dis ; 15(1): 5, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177154

RESUMO

Neuroblastoma (NB) is a challenging pediatric extracranial solid tumor characterized by a poor prognosis and resistance to chemotherapy. Identifying targets to enhance chemotherapy sensitivity in NB is of utmost importance. Increasing evidence implicates long noncoding RNAs (lncRNAs) play important roles in cancer, but their functional roles remain largely unexplored. Here, we analyzed our RNA sequencing data and identified the upregulated lncRNA ZNF674-AS1 in chemotherapy non-responsive NB patients. Elevated ZNF674-AS1 expression is associated with poor prognosis and high-risk NB. Importantly, targeting ZNF674-AS1 expression in NB cells suppressed tumor growth in vivo. Further functional studies have revealed that ZNF674-AS1 constrains cisplatin sensitivity by suppressing pyroptosis and promoting cell proliferation. Moreover, ZNF674-AS1 primarily relies on CA9 to fulfill its functions on cisplatin resistance. High CA9 levels were associated with high-risk NB and predicted poor patient outcomes. Mechanistically, ZNF674-AS1 directly interacted with the RNA binding protein IGF2BP3 to enhance the stability of CA9 mRNA by binding with CA9 transcript, leading to elevated CA9 expression. As a novel regulator of CA9, IGF2BP3 positively upregulated CA9 expression. Together, these results expand our understanding of the cancer-associated function of lncRNAs, highlighting the ZNF674-AS1/IGF2BP3/CA9 axis as a constituting regulatory mode in NB tumor growth and cisplatin resistance. These insights reveal the pivotal role of ZNF674-AS1 inhibition in recovering cisplatin sensitivity, thus providing potential therapeutic targets for NB treatment.


Assuntos
Anidrase Carbônica IX , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Criança , Humanos , Antígenos de Neoplasias , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Piroptose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
14.
Mol Cell Biochem ; 384(1-2): 187-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037421

RESUMO

Although E2F1-mediated DNA double-stranded breaks (DSBs) and tetraploid have been extensively studied, the role of E2F1 in mitotic catastrophe is still unknown. We have previously shown that 8-chloro-adenosine (8-Cl-Ado) induces DNA DSBs and aberrant mitosis in human lung cancer cells, followed by delayed apoptosis. Here, we demonstrate that E2F1-mediated DNA damage is implicated in 8-Cl-Ado-induced chromosome missegregation and apoptosis in lung cancer H1299 cells. We showed that E2F1 was accumulated upon 8-Cl-Ado-induced DNA DSBs. Induction of E2F1 by 8-Cl-Ado caused DNA damage in cycling cells including M cells. In contrast, silencing of E2F1 expression decreased 8-Cl-Ado-induced DNA DSBs, particularly eliminated E2F1-mediated mitotic DNA damage. Over-expression of E2F1 and/or 8-Cl-Ado exposure resulted in aberrant mitotic spindles and chromosome segregation errors. Furthermore, over-expression of E2F1 expression enhanced 8-Cl-Ado-induced apoptosis. Together, our data indicate that E2F1-mediated DNA damage, in particular mitotic DNA damage, is an important fraction of 8-Cl-Ado-induced DNA damage, which is implicated in 8-Cl-Ado-induced mitotic catastrophe and delayed apoptosis. Induction of E2F1 by 8-Cl-Ado may contribute at least partly to the drug-inhibited proliferation of cancer cells.


Assuntos
2-Cloroadenosina/análogos & derivados , Apoptose/efeitos dos fármacos , Segregação de Cromossomos/genética , Fator de Transcrição E2F1/metabolismo , Neoplasias Pulmonares/genética , 2-Cloroadenosina/farmacologia , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Aberrações Cromossômicas , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Regulação para Baixo , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Mitose/efeitos dos fármacos , Mitose/genética , Interferência de RNA , RNA Interferente Pequeno , Tetraploidia , Proteína Supressora de Tumor p14ARF/metabolismo
15.
J Clin Hypertens (Greenwich) ; 25(9): 868-879, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37602974

RESUMO

Sodium intake shows a positive correlation with blood pressure, resulting in an increased risk for cardiovascular diseases (CVD). Salt reduction is a key step toward the WHO's goal of 25% reduction in mortality from non-communicable diseases (NCDs) by 2025. This study aims to assess the current condition and temporal changes of the global CVD burden due to high sodium intake (HSI). We extracted data from the Global Burden of Disease (GBD) study 2019. The numbers and age-standardized rates of mortality and disability-adjusted life-years (DALYs), stratified by location, sex, and socio-demographic Index (SDI), were used to assess the high sodium intake attributable CVD burden from 1990 to 2019. The relationship between the DALYs rates and related factors was evaluated by stepwise multiple linear regression analysis. Globally, in 2019, the deaths and DALYs of HSI-related CVD were 1.72 million and 40.54 million, respectively, increasing by 41.08% and 33.06% from 1990. Meanwhile, the corresponding mortality and DALYs rates dropped by 35.1% and 35.2%, respectively. The high-middle and middle SDI quintiles bore almost two-thirds of CVD burden caused by HSI. And the leading cause of HSI attributable CVD burden was ischemic heart disease. Universal health coverage (UHC) was associated with the DALYs rates after adjustment. From 1990 to 2019, the global CVD burden attributable to HSI has declined with spatiotemporal and sexual heterogeneity. However, it remains a major public health challenge because of the increasing absolute numbers. Improving UHC serves as an effective strategy to reduce the HSI-related CVD burden.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Doenças Cardiovasculares/epidemiologia , Pressão Sanguínea , Carga Global da Doença , Cloreto de Sódio na Dieta/efeitos adversos
16.
J Fungi (Basel) ; 10(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38248924

RESUMO

Cut chrysanthemum, known as a highly favored floral choice globally, experiences a significant decline in production due to continuous cropping. The adverse physiological effects on cut chrysanthemums result from the degradation of a soil's physical and chemical properties, coupled with the proliferation of pathogens. The "Guangyu" cultivar in Xinxiang, Henan Province, China, has been specifically influenced by these effects. First, the precise pathogen accountable for wilt disease was effectively identified and validated in this study. An analysis was then conducted to examine the invasion pattern of the pathogen and the physiological response of chrysanthemum. Finally, the PacBio platform was employed to investigate the dynamic alterations in the microbial community within the soil rhizosphere by comparing the effects of 7 years of monocropping with the first year. Findings indicated that Fusarium solani was the primary causative agent responsible for wilt disease, because it possesses the ability to invade and establish colonies in plant roots, leading to alterations in various physiological parameters of plants. Continuous cropping significantly disturbed the microbial community composition, potentially acting as an additional influential factor in the advancement of wilt.

17.
J Mol Med (Berl) ; 101(11): 1421-1436, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37712965

RESUMO

This study aimed to analyze the clinical characteristics, cell types, and molecular characteristics of the tumor microenvironment to better predict the prognosis of neuroblastoma (NB). The gene expression data and corresponding clinical information of 498 NB patients were obtained from the Gene Expression Omnibus (GEO: GSE62564) and ArrayExpress (accession: E-MTAB-8248). The relative cell abundances were estimated using single-sample gene set enrichment analysis (ssGSEA) with the R gene set variation analysis (GSVA) package. We performed Cox regression analyses to identify marker genes indicating cell subsets and combined these with prognostically relevant clinical factors to develop a new prognostic model. Data from the E-MTAB-8248 cohort verified the predictive accuracy of the prognostic model. Single-cell RNA-seq data were analyzed by using the R Seurat package. Multivariate survival analysis for each gene, using clinical characteristics as cofactors, identified 34 prognostic genes that showed a significant correlation with both event-free survival (EFS) and overall survival (OS) (log-rank test, P value < 0.05). The pathway enrichment analysis revealed that these prognostic genes were highly enriched in the marker genes of NB cells with mesenchymal features and protein translation. Ultimately, USP39, RPL8, IL1RAPL1, MAST4, CSRP2, ATP5E, International Neuroblastoma Staging System (INSS) stage, age, and MYCN status were selected to build an optimized Cox model for NB risk stratification. These samples were divided into two groups using the median of the risk score as a cutoff. The prognosis of samples in the poor prognosis group (PP) was significantly worse than that of samples in the good prognosis group (GP) (log-rank test, P value < 0.0001, median EFS: 640.5 vs. 2247 days, median OS: 1279.5 vs. 2519 days). The risk model was also regarded as a prognostic indicator independent of MYCN status, age, and stage. Finally, through scRNA-seq data, we found that as an important prognostic marker, USP39 might participate in the regulation of RNA splicing in NB. Our study established a multivariate Cox model based on gene signatures and clinical characteristics to better predict the prognosis of NB and revealed that mesenchymal signature genes of NB cells, especially USP39, were more abundant in patients with a poor prognosis than in those with a good prognosis. KEY MESSAGES: Our study established a multivariate Cox model based on gene signatures and clinical characteristics to better predict the prognosis of NB and revealed that mesenchymal signature genes of NB cells, especially USP39, were more abundant in patients with a poor prognosis than in those with a good prognosis. USP39, RPL8, IL1RAPL1, MAST4, CSRP2, ATP5E, International Neuroblastoma Staging System (INSS) stage, age, and MYCN status were selected to build an optimized Cox model for NB risk stratification. These samples were divided into two groups using the median of the risk score as a cutoff. The prognosis of samples in the poor prognosis group (PP) was significantly worse than that of samples in the good prognosis group (GP). Finally, through scRNA-seq data, we found that as an important prognostic marker, USP39 might participate in the regulation of RNA splicing in NB.


Assuntos
Neuroblastoma , Microambiente Tumoral , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Microambiente Tumoral/genética , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Fatores de Risco , Análise de Sobrevida , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases , Proteases Específicas de Ubiquitina
18.
J Pathol Clin Res ; 9(6): 475-487, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37608330

RESUMO

Recently, telomerase reverse transcriptase (TERT) gene rearrangements have been identified in neuroblastoma (NB), the typical pathological type of neuroblastic tumours (NTs); however, the prevalence of TERT rearrangements in other types of NT remains unknown. This study aimed to develop a practical method for detecting TERT defects and to evaluate the clinical relevance of TERT rearrangements as a biomarker for NT prognosis. A TERT break-apart probe for fluorescence in situ hybridisation (FISH) was designed, optimised, and applied to assess the genomic status of TERT in Chinese children with NTs at the Beijing Children's Hospital from 2016 to 2019. Clinical, histological, and genetic characteristics of TERT-rearranged NTs were further addressed. Genomic TERT rearrangements could be effectively detected by FISH and were mutually exclusive with MYCN amplification. TERT rearrangements were identified in 6.0% (38/633) of NTs overall, but 12.4% (31/250) in high-risk patients. TERT rearrangements identified a subtype of aggressive NTs with the characteristics of Stage 3/4, high-risk category, over 18 months old, and presenting all histological subtypes of NB and ganglioneuroblastoma nodular. Moreover, TERT rearrangements were significantly associated with elevated TERT expression levels and decreased survival chances. Multivariable analysis confirmed that it was an independent prognostic marker for NTs. FISH is an easily applicable method for evaluating TERT defects, which define a subgroup of NTs with unfavourable prognosis. TERT rearrangements would contribute to characterising NT molecular signatures in clinical practice.


Assuntos
Ganglioneuroblastoma , Neuroblastoma , Telomerase , Criança , Humanos , Lactente , Neuroblastoma/genética , Neuroblastoma/diagnóstico , Neuroblastoma/patologia , Ganglioneuroblastoma/genética , Ganglioneuroblastoma/patologia , Hibridização in Situ Fluorescente , Prognóstico , Telomerase/genética
19.
J Clin Hypertens (Greenwich) ; 24(11): 1461-1472, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36210736

RESUMO

Atrial fibrillation/atrial flutter (AF/AFL) has progressed to be a public health concern, and high systolic blood pressure (HSBP) remains the leading risk factor for AF/AFL. This study estimated the HSBP attributable AF/AFL burden based on the data from the Global Burden of Disease (GBD) study 2019. Numbers, age-standardized rates (ASR) of deaths, disability-adjusted life years (DALYs), and corresponding estimated annual percentage change (EAPC) were analyzed by age, sex, sociodemographic index (SDI), and locations. Gini coefficient was calculated to evaluate health inequality. Globally, HSBP-related AF/AFL caused 107 091 deaths and 3 337 876 DALYs in 2019, an increase of 142.5% and 105.9% from 1990, respectively. The corresponding mortality and DALYs ASR declined by 5.8% and 7.7%. High-income Asia Pacific experienced the greatest decrease in mortality and DALYs ASR, whereas the largest increase was observed in Andean Latin America. Almost half of the HSBP-related AF/AFL burden was carried by high and high-middle SDI regions, and it was experiencing a shift to lower SDI regions. A negative correlation was detected between EAPC and SDI. Females and elderly people tended to have a higher AF/AFL burden, whereas young adults (30-49 years old) experienced an annual increase in AF/AFL burden. The Gini index of DALYs rate decreased from 0.224 in 1990 to 0.183 in 2019. Despite improved inequality having been observed over the past decades, the HSBP-related AF/AFL burden varied across regions, sexes, and ages. Cost-effective preventive, diagnostic, and therapeutic tools are required to be implemented in less developed regions.


Assuntos
Fibrilação Atrial , Flutter Atrial , Doenças do Sistema Nervoso Autônomo , Hipertensão , Adulto Jovem , Feminino , Humanos , Idoso , Adulto , Pessoa de Meia-Idade , Carga Global da Doença , Anos de Vida Ajustados por Qualidade de Vida , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Pressão Sanguínea , Disparidades nos Níveis de Saúde , Saúde Global , Hipertensão/epidemiologia , Fatores de Risco
20.
Ann Transl Med ; 10(22): 1243, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36544668

RESUMO

Background: This study sought to explore the mechanism of action of the micro ribonucleic acid (miR)-4291 in stabilizing atherosclerotic (AS) plaques. Methods: An AS model of apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (HFD) was established. Oxidized low-density lipoprotein (ox-LDL) was used to induce an inflammatory response of RAW264.7 macrophages. The mice were divided into the normal diet (ND) + miR-4291 negative control (NC) group, the ND + miR-4291 mimic group, the HFD + miR-4291 NC group, and the HFD + miR-4291 mimic group. They were also classified into the miR-4291 NC group, the miR-4291 mimic group, the ox-LDL + miR-4291 NC group, and the ox-LDL + miR-4291 mimic group. The arterial plaque burden of the mice was assessed by hematoxylin-eosin staining and immunohistochemistry, and the expression of phosphorylated-extracellular signal-regulated kinase 2 (p-ERK2) and related proteins in the arterial plaques and RAW264.7 macrophages of the mice were detected by Western blotting. Results: Obvious plaques with massive macrophage infiltration were found in the aortic roots of the mice fed a HFD, and smooth muscle cells were found at the margin of the plaques. In the HFD + miR-4291 mimic group, the number of plaques and macrophages was significantly declined, but there were no significant changes in the smooth muscle cells compared to those in the HFD + miR-4291 NC group. The Western blot results showed that miR-4291 reduced the protein expression of p-ERK1-2, t-ERK1-2, TNF-α, MCP-1, MMP-1, MMP-3, and MMP-9 in the AS plaques and the ox-LDL-induced RAW264.7 macrophages of the mice fed a HFD. Conclusions: MiR-4291 reduced the expression of MMP-2/9 by inhibiting the activity of ERK2, which in turn increased the fibrous cap thickness and stabilized the vulnerable plaques in AS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA