Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Physiol ; 176(2): 1793-1807, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217594

RESUMO

Interactions between the dinoflagellate endosymbiont Symbiodinium and its cnidarian hosts (e.g. corals, sea anemones) are the foundation of coral-reef ecosystems. Carbon flow between the partners is a hallmark of this mutualism, but the mechanisms governing this flow and its impact on symbiosis remain poorly understood. We showed previously that although Symbiodinium strain SSB01 can grow photoautotrophically, it can grow mixotrophically or heterotrophically when supplied with Glc, a metabolite normally transferred from the alga to its host. Here we show that Glc supplementation of SSB01 cultures causes a loss of pigmentation and photosynthetic activity, disorganization of thylakoid membranes, accumulation of lipid bodies, and alterations of cell-surface morphology. We used global transcriptome analyses to determine if these physiological changes were correlated with changes in gene expression. Glc-supplemented cells exhibited a marked reduction in levels of plastid transcripts encoding photosynthetic proteins, although most nuclear-encoded transcripts (including those for proteins involved in lipid synthesis and formation of the extracellular matrix) exhibited little change in their abundances. However, the altered carbon metabolism in Glc-supplemented cells was correlated with modest alterations (approximately 2x) in the levels of some nuclear-encoded transcripts for sugar transporters. Finally, Glc-bleached SSB01 cells appeared unable to efficiently populate anemone larvae. Together, these results suggest links between energy metabolism and cellular physiology, morphology, and symbiotic interactions. However, the results also show that in contrast to many other organisms, Symbiodinium can undergo dramatic physiological changes that are not reflected by major changes in the abundances of nuclear-encoded transcripts and thus presumably reflect posttranscriptional regulatory processes.


Assuntos
Dinoflagellida/fisiologia , Glucose/farmacologia , Anêmonas-do-Mar/parasitologia , Transcriptoma , Animais , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Processos Heterotróficos , Fotossíntese , Simbiose
2.
Plant J ; 82(3): 393-412, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25704665

RESUMO

The success of the green alga Chlamydomonas reinhardtii as a model organism is to a large extent due to the wide range of molecular techniques that are available for its characterization. Here, we review some of the techniques currently used to modify and interrogate the C. reinhardtii nuclear genome and explore several technologies under development. Nuclear mutants can be generated with ultraviolet (UV) light and chemical mutagens, or by insertional mutagenesis. Nuclear transformation methods include biolistic delivery, agitation with glass beads, and electroporation. Transforming DNA integrates into the genome at random sites, and multiple strategies exist for mapping insertion sites. A limited number of studies have demonstrated targeted modification of the nuclear genome by approaches such as zinc-finger nucleases and homologous recombination. RNA interference is widely used to knock down expression levels of nuclear genes. A wide assortment of transgenes has been successfully expressed in the Chlamydomonas nuclear genome, including transformation markers, fluorescent proteins, reporter genes, epitope tagged proteins, and even therapeutic proteins. Optimized expression constructs and strains help transgene expression. Emerging technologies such as the CRISPR/Cas9 system, high-throughput mutant identification, and a whole-genome knockout library are being developed for this organism. We discuss how these advances will propel future investigations.


Assuntos
Chlamydomonas/genética , Técnicas Genéticas , Biologia Molecular/métodos , Núcleo Celular/genética , Chlamydomonas/efeitos dos fármacos , Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Genoma de Planta , Recombinação Homóloga , Mutagênese , Mutagênicos/farmacologia , Plantas Geneticamente Modificadas , Interferência de RNA , Transformação Genética
3.
Plant J ; 81(1): 147-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25267488

RESUMO

There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60,000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes.


Assuntos
Chlamydomonas reinhardtii/genética , Citometria de Fluxo/métodos , Metabolismo dos Lipídeos/genética , Chlamydomonas reinhardtii/metabolismo , Clorofila/metabolismo , Fluorescência , Mutação , Oxazinas/análise , Fenótipo
4.
Photosynth Res ; 123(3): 265-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24510550

RESUMO

Plant terpenoids are among the most diverse group of naturally-occurring organic compounds known, and several are used in contemporary consumer products. Terpene synthase enzymes catalyze complex rearrangements of carbon skeleton precursors to yield thousands of unique chemical structures that range in size from the simplest five carbon isoprene unit to the long polymers of rubber. Such chemical diversity has established plant terpenoids as valuable commodity chemicals with applications in the pharmaceutical, neutraceutical, cosmetic, and food industries. More recently, terpenoids have received attention as a renewable alternative to petroleum-derived fuels and as the building blocks of synthetic biopolymers. However, the current plant- and petrochemical-based supplies of commodity terpenoids have major limitations. Photosynthetic microorganisms provide an opportunity to generate terpenoids in a renewable manner, employing a single consolidated host organism that is able to use solar energy, H2O and CO2 as the primary inputs for terpenoid biosynthesis. Advances in synthetic biology have seen important breakthroughs in microbial terpenoid engineering, traditionally via fermentative pathways in yeast and Escherichia coli. This review draws on the knowledge obtained from heterotrophic microbial engineering to propose strategies for the development of microbial photosynthetic platforms for industrial terpenoid production. The importance of utilizing the wealth of genetic information provided by nature to unravel the regulatory mechanisms of terpenoid biosynthesis is highlighted.


Assuntos
Biocombustíveis , Cianobactérias/metabolismo , Engenharia Metabólica/métodos , Microalgas/metabolismo , Fotossíntese/fisiologia , Terpenos/metabolismo , Alquil e Aril Transferases/metabolismo
5.
Eukaryot Cell ; 13(11): 1450-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25239976

RESUMO

Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (~75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes.


Assuntos
Parede Celular/ultraestrutura , Estramenópilas/ultraestrutura , Sequência de Aminoácidos , Aminoácidos/análise , Organismos Aquáticos/ultraestrutura , Sequência de Bases , Microscopia Eletrônica , Análise de Sequência de DNA , Espectroscopia de Infravermelho com Transformada de Fourier , Estramenópilas/enzimologia , Estramenópilas/genética
6.
Curr Opin Biotechnol ; 87: 103113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564969

RESUMO

A central goal of synthetic biology is the reprogramming of living systems for predetermined biological functions. While many engineering efforts have been made in living systems, these innovations have been mainly employed with microorganisms or cell lines. The engineering of multicellular organisms including animals remains challenging owing to the complexity of these systems. In this context, microbes, with their intricate impact on animals, have opened new opportunities. Through the utilization of the symbiotic relationships between microbes and animals, researchers have effectively manipulated animals in various ways using engineered microbes. This focused approach has demonstrated its significance in scientific exploration and engineering with model animals, coral preservation and restoration, and advancements in human health.


Assuntos
Bactérias , Simbiose , Biologia Sintética , Animais , Bactérias/genética , Bactérias/metabolismo , Biologia Sintética/métodos
7.
Curr Biol ; 34(3): 594-605.e4, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157859

RESUMO

Chlorophyll c is a key photosynthetic pigment that has been used historically to classify eukaryotic algae. Despite its importance in global photosynthetic productivity, the pathway for its biosynthesis has remained elusive. Here we define the CHLOROPHYLL C SYNTHASE (CHLCS) discovered through investigation of a dinoflagellate mutant deficient in chlorophyll c. CHLCSs are proteins with chlorophyll a/b binding and 2-oxoglutarate-Fe(II) dioxygenase (2OGD) domains found in peridinin-containing dinoflagellates; other chlorophyll c-containing algae utilize enzymes with only the 2OGD domain or an unknown synthase to produce chlorophyll c. 2OGD-containing synthases across dinoflagellate, diatom, cryptophyte, and haptophyte lineages form a monophyletic group, 8 members of which were also shown to produce chlorophyll c. Chlorophyll c1 to c2 ratios in marine algae are dictated in part by chlorophyll c synthases. CHLCS heterologously expressed in planta results in the accumulation of chlorophyll c1 and c2, demonstrating a path to augment plant pigment composition with algal counterparts.


Assuntos
Clorofila , Dinoflagellida , Clorofila A , Proteínas , Plantas , Filogenia
8.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38187728

RESUMO

Oxygen (O2), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O2 species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O2 sensitivity screen on a genome-wide insertional mutant library of the unicellular alga Chlamydomonas reinhardtii. This screen led to identification of a gene encoding a protein designated Rubisco methyltransferase 2 (RMT2). Although homologous to methyltransferases, RMT2 has not been experimentally demonstrated to have methyltransferase activity. Furthermore, the rmt2 mutant was not compromised for Rubisco (first enzyme of Calvin-Benson Cycle) levels but did exhibit a marked decrease in accumulation/activity of photosystem I (PSI), which causes light sensitivity, with much less of an impact on other photosynthetic complexes. This mutant also shows increased accumulation of Ycf3 and Ycf4, proteins critical for PSI assembly. Rescue of the mutant phenotype with a wild-type (WT) copy of RMT2 fused to the mNeonGreen fluorophore indicates that the protein localizes to the chloroplast and appears to be enriched in/around the pyrenoid, an intrachloroplast compartment present in many algae that is packed with Rubisco and potentially hypoxic. These results indicate that RMT2 serves an important role in PSI biogenesis which, although still speculative, may be enriched around or within the pyrenoid.

9.
STAR Protoc ; 4(4): 102627, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37792536

RESUMO

Genetic approaches are limited in the dinoflagellate family, Symbiodiniaceae, causing a bottleneck in the discovery of useful mutants toward the goal of preventing future coral bleaching events. In this protocol, we demonstrate the application of UV exposure, coupled with downstream phenotypic screening and mutant isolation, to form a UV mutagenesis pipeline. This pipeline provides an avenue to generate Symbiodiniaceae mutants to help link genotype to phenotype, as well as address previously unanswered questions surrounding relationships with host organisms, like coral. For complete details on the use and execution of this protocol, please refer to Jinkerson et al. (2022).1.


Assuntos
Dinoflagellida , Dinoflagellida/genética , Genótipo , Fenótipo , Mutagênese/genética
10.
Front Plant Sci ; 14: 1104751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954996

RESUMO

Plant cellular agriculture aims to disrupt the way plant derived products are produced. Plant cell cultures are typically grown with sucrose as the primary carbon and energy source, but alternative carbon sources may have advantages over sucrose including less strain on food systems, lower costs, and more sustainable sourcing. Here we review carbon and energy sources that may serve as alternatives to sucrose in the cultivation of plant cell cultures. We identified acetate as a promising candidate and took the first steps to evaluate its potential for use in growing tobacco plant cell cultures. When added to media containing sucrose, acetate concentrations above 8 mM completely inhibit growth. Lower concentrations of acetate (2-4 mM) can support an increase in dry weight without sucrose but do not provide enough energy for substantial growth. 13C labeling indicates that tobacco plant cell cultures can incorporate carbon from exogenous acetate into proteins and carbohydrates. Analysis of transcriptome data showed that genes encoding glyoxylate cycle enzymes are expressed at very low levels compared to genes from the TCA cycle and glycolysis. Adaptive laboratory evolution experiments were able to increase tobacco cell cultures tolerance to acetate, demonstrating the potential for this type of approach going forward. Overall, our results indicate that acetate can be metabolized by plant cell cultures and suggest that further adaptive laboratory evolution or strain engineering efforts may enable acetate to serve as a sole carbon and energy source for tobacco plant cell cultures. This assessment of acetate provides a framework for evaluating other carbon and energy sources for plant cell cultures, efforts that will help reduce the costs and environmental impact, and increase the commercial potential of plant cellular agriculture.

11.
Biochem Biophys Res Commun ; 417(2): 704-9, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22177948

RESUMO

Chlamydomonas reinhardtii (Chlamydomonas throughout) encodes two [FeFe]-hydrogenases, designated HYDA1 and HYDA2. While HYDA1 is considered the dominant hydrogenase, the role of HYDA2 is unclear. To study the individual functions of each hydrogenase and provide a platform for future bioengineering, we isolated the Chlamydomonas hydA1-1, hydA2-1 single mutants and the hydA1-1 hydA2-1 double mutant. A reverse genetic screen was used to identify a mutant with an insertion in HYDA2, followed by mutagenesis of the hydA2-1 strain coupled with a H(2) chemosensor phenotypic screen to isolate the hydA1-1 hydA2-1 mutant. Genetic crosses of the hydA1-1 hydA2-1 mutant to wild-type cells allowed us to also isolate the single hydA1-1 mutant. Fermentative, photosynthetic, and in vitro hydrogenase activities were assayed in each of the mutant genotypes. Surprisingly, analyses of the hydA1-1 and hydA2-1 single mutants, as well as the HYDA1 and HYDA2 rescued hydA1-1 hydA2-1 mutant demonstrated that both hydrogenases are able to catalyze H(2) production from either fermentative or photosynthetic pathways. The physiology of both mutant and complemented strains indicate that the contribution of HYDA2 to H(2) photoproduction is approximately 25% that of HYDA1, which corresponds to similarly low levels of in vitro hydrogenase activity measured in the hydA1-1 mutant. Interestingly, enhanced in vitro and fermentative H(2) production activities were observed in the hydA1-1 hydA2-1 strain complemented with HYDA1, while maximal H(2)-photoproduction rates did not exceed those of wild-type cells.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Chlamydomonas reinhardtii/genética , Hidrogenase/genética , Proteínas Ferro-Enxofre/genética , Mutagênese Insercional
12.
Nat Food ; 3(6): 461-471, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118051

RESUMO

Artificial photosynthesis systems are proposed as an efficient alternative route to capture CO2 to produce additional food for growing global demand. Here a two-step CO2 electrolyser system was developed to produce a highly concentrated acetate stream with a 57% carbon selectivity (CO2 to acetate), allowing its direct use for the heterotrophic cultivation of yeast, mushroom-producing fungus and a photosynthetic green alga, in the dark without inputs from biological photosynthesis. An evaluation of nine crop plants found that carbon from exogenously supplied acetate incorporates into biomass through major metabolic pathways. Coupling this approach to existing photovoltaic systems could increase solar-to-food energy conversion efficiency by about fourfold over biological photosynthesis, reducing the solar footprint required. This technology allows for a reimagination of how food can be produced in controlled environments.

13.
Curr Biol ; 32(11): 2402-2415.e4, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504283

RESUMO

Photosynthesis shapes the symbiotic relationships between cnidarians and Symbiodiniaceae algae-with many cnidarian hosts requiring symbiont photosynthate for survival-but little is known about how photosynthesis impacts symbiosis establishment. Here, we show that during symbiosis establishment, infection, proliferation, and maintenance can proceed without photosynthesis, but the ability to do so is dependent on specific cnidarian-Symbiodiniaceae relationships. The evaluation of 31 pairs of symbiotic relationships (five species of Symbiodiniaceae in sea anemone, coral, and jellyfish hosts) revealed that infection can occur without photosynthesis. A UV mutagenesis method for Symbiodiniaceae was established and used to generate six photosynthetic mutants that can infect these hosts. Without photosynthesis, Symbiodiniaceae cannot proliferate in the sea anemone Aiptasia or jellyfish Cassiopea but can proliferate in the juvenile polyps of the coral Acropora. After 6 months of darkness, Breviolum minutum is maintained within Aiptasia, indicating that Symbiodiniaceae maintenance can be independent of photosynthesis. Manipulating photosynthesis provides insights into cnidarian-Symbiodiniaceae symbiosis.


Assuntos
Antozoários , Dinoflagellida , Anêmonas-do-Mar , Animais , Fotossíntese , Simbiose
14.
Nat Genet ; 54(5): 705-714, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513725

RESUMO

Most genes in photosynthetic organisms remain functionally uncharacterized. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii, we determined the phenotypes of more than 58,000 mutants under more than 121 different environmental growth conditions and chemical treatments. A total of 59% of genes are represented by at least one mutant that showed a phenotype, providing clues to the functions of thousands of genes. Mutant phenotypic profiles place uncharacterized genes into functional pathways such as DNA repair, photosynthesis, the CO2-concentrating mechanism and ciliogenesis. We illustrate the value of this resource by validating phenotypes and gene functions, including three new components of an actin cytoskeleton defense pathway. The data also inform phenotype discovery in land plants; mutants in Arabidopsis thaliana genes exhibit phenotypes similar to those we observed in their Chlamydomonas homologs. We anticipate that this resource will guide the functional characterization of genes across the tree of life.


Assuntos
Arabidopsis , Chlamydomonas reinhardtii , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Eucariotos , Fenótipo , Fotossíntese/genética
15.
Eukaryot Cell ; 9(4): 486-501, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20139239

RESUMO

There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H(2) yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H(2) production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.


Assuntos
Biocombustíveis , Eucariotos/genética , Eucariotos/metabolismo , Engenharia Genética , Metabolismo dos Carboidratos , Eucariotos/citologia , Eucariotos/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Genoma , Hidrogênio/metabolismo , Metabolismo dos Lipídeos , Fotossíntese
16.
Eukaryot Cell ; 9(8): 1251-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20562225

RESUMO

The accumulation of bioenergy carriers was assessed in two starchless mutants of Chlamydomonas reinhardtii (the sta6 [ADP-glucose pyrophosphorylase] and sta7-10 [isoamylase] mutants), a control strain (CC124), and two complemented strains of the sta7-10 mutant. The results indicate that the genetic blockage of starch synthesis in the sta6 and sta7-10 mutants increases the accumulation of lipids on a cellular basis during nitrogen deprivation relative to that in the CC124 control as determined by conversion to fatty acid methyl esters. However, this increased level of lipid accumulation is energetically insufficient to completely offset the loss of cellular starch that is synthesized by CC124 during nitrogen deprivation. We therefore investigated acetate utilization and O(2) evolution to obtain further insights into the physiological adjustments utilized by the two starchless mutants in the absence of starch synthesis. The results demonstrate that both starchless mutants metabolize less acetate and have more severely attenuated levels of photosynthetic O(2) evolution than CC124, indicating that a decrease in overall anabolic processes is a significant physiological response in the starchless mutants during nitrogen deprivation. Interestingly, two independent sta7-10:STA7 complemented strains exhibited significantly greater quantities of cellular starch and lipid than CC124 during acclimation to nitrogen deprivation. Moreover, the complemented strains synthesized significant quantities of starch even when cultured in nutrient-replete medium.


Assuntos
Metabolismo dos Carboidratos/genética , Chlamydomonas reinhardtii/enzimologia , Teste de Complementação Genética , Isoamilase/genética , Metabolismo dos Lipídeos/genética , Mutação/genética , Amido/metabolismo , Acetatos/metabolismo , Contagem de Células , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Clorofila/metabolismo , Cromatografia Gasosa , Ácidos Graxos/análise , Ionização de Chama , Isoamilase/metabolismo , Microscopia de Fluorescência , Nitrogênio/deficiência , Oxigênio/metabolismo , Fotossíntese
17.
Front Plant Sci ; 12: 691295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381480

RESUMO

Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.

18.
Nat Commun ; 11(1): 108, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913264

RESUMO

In cnidarian-Symbiodiniaceae symbioses, algal endosymbiont population control within the host is needed to sustain a symbiotic relationship. However, the molecular mechanisms that underlie such population control are unclear. Here we show that a cnidarian host uses nitrogen limitation as a primary mechanism to control endosymbiont populations. Nitrogen acquisition and assimilation transcripts become elevated in symbiotic Breviolum minutum algae as they reach high-densities within the sea anemone host Exaiptasia pallida. These same transcripts increase in free-living algae deprived of nitrogen. Symbiotic algae also have an elevated carbon-to-nitrogen ratio and shift metabolism towards scavenging nitrogen from purines relative to free-living algae. Exaiptasia glutamine synthetase and glutamate synthase transcripts concomitantly increase with the algal endosymbiont population, suggesting an increased ability of the host to assimilate ammonium. These results suggest algal growth and replication in hospite is controlled by access to nitrogen, which becomes limiting for the algae as their population within the host increases.


Assuntos
Dinoflagellida/fisiologia , Anêmonas-do-Mar/metabolismo , Simbiose , Animais , Carbono/metabolismo , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Glutamato Sintase/genética , Glutamato Sintase/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Nitrogênio/metabolismo , Anêmonas-do-Mar/enzimologia , Anêmonas-do-Mar/genética
19.
Nat Genet ; 51(4): 627-635, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886426

RESUMO

Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized1,2. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii. The 62,389 mutants in the library, covering 83% of nuclear protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We performed a genome-wide survey of genes required for photosynthesis, which identified 303 candidate genes. Characterization of one of these genes, the conserved predicted phosphatase-encoding gene CPL3, showed that it is important for accumulation of multiple photosynthetic protein complexes. Notably, 21 of the 43 higher-confidence genes are novel, opening new opportunities for advances in understanding of this biogeochemically fundamental process. This library will accelerate the characterization of thousands of genes in algae, plants, and animals.


Assuntos
Chlamydomonas reinhardtii/genética , Clorófitas/genética , Eucariotos/genética , Mutação/genética , Fotossíntese/genética , Biblioteca Gênica , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Análise de Sequência de DNA/métodos
20.
Front Plant Sci ; 7: 690, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303412

RESUMO

The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to fivefold. The level of increase is dependent on promoter strength and culturing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA