Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Drug Resist Updat ; 73: 101054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277756

RESUMO

AIMS: Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS: Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS: SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1ß inhibition. CONCLUSIONS: SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Fosforilação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sistema de Sinalização das MAP Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologia
2.
Eur J Clin Invest ; : e14290, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044314

RESUMO

BACKGROUND: Growth differentiation factor 15 (GDF15), a stress-responsive cytokine from transforming growth factor superfamily, is highly expressed in mammalian tissues, including pancreas, stomach and intestine under pathological conditions. In particular, elevated levels of GDF15 might play an important role in the development and progression of various gastrointestinal cancers (GCs), suggesting its potential as a promising target for disease prediction and treatment. METHODS: In this review, systematic reviews addressing the role of GDF15 in GCs were updated, along with the latest clinical trials focussing on the GDF15-associated digestive malignancies. RESULTS: The multiple cellular pathways through which GDF15 is involved in the regulation of physiological and pathological conditions were first summarized. Then, GDF15 was also established as a valuable clinical index, functioning as a predictive marker in diverse GCs. Notably, latest clinical treatments targeting GDF15 were also highlighted, demonstrating its promising potential in mitigating and curing digestive malignancies. CONCLUSIONS: This review unveils the pivotal roles of GDF15 and its potential as a promising target in the pathogenesis of GCs, which may provide insightful directions for future investigations.

3.
Mol Nutr Food Res ; 68(15): e2300883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38984736

RESUMO

SCOPE: Polar lipids, such as gangliosides and phospholipids, are fundamental structural components that play critical roles in the development and maturation of neurons in the brain. Recent evidence has demonstrated that dietary intakes of polar lipids in early life are associated with improved cognitive outcomes during infancy and adolescence. However, the specific mechanisms through which these lipids impact cognition remain unclear. METHODS AND RESULTS: This study examines the direct physiological impact of polar lipid supplementation, in the form of buttermilk powder, on primary cortical neuron growth and maturation. The changes are measured with postsynaptic current response recordings, immunohistochemical examination of functional synapse localization and numbers, and the biochemical quantification of receptors responsible for neuronal synaptic neurotransmission. Chronic exposure to polar lipids increases primary mouse cortical neuron basal excitatory synapse response strength attributed to enhanced dendritic complexity and an altered expression of the excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit 2 (GluR2). CONCLUSION: The present finding suggests that dietary polar lipids improve human cognition through an enhancement of neuronal maturation and/or function.


Assuntos
Suplementos Nutricionais , Neurônios , Transmissão Sináptica , Animais , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Camundongos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Células Cultivadas , Leitelho , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL
4.
BMB Rep ; 57(5): 207-215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627947

RESUMO

The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Metilaminas , Microbioma Gastrointestinal/fisiologia , Humanos , Envelhecimento/metabolismo , Metilaminas/metabolismo , Equol/metabolismo , Cumarínicos/metabolismo , Imidazóis/metabolismo , Propionatos/metabolismo , Animais
5.
Artigo em Inglês | MEDLINE | ID: mdl-39155060

RESUMO

BACKGROUND: Uric acid (UA), the terminal breakdown product of purine metabolism, possesses contradictory roles, functioning both as an inflammatory mediator and as an antioxidant. Its clinical relevance, particularly in geriatric populations, remains a topic of ongoing debate. Aiming to elucidate whether circulating UA is detrimental or beneficial to human health, we investigate the association between serum UA concentrations and the frailty index-a comprehensive measure of biological aging in a nationally representative cohort of community-dwelling older adults. METHODS: We conducted a population-based, cross-sectional study utilizing data from the Korea National Health and Nutrition Examination Survey. The sample included 4268 participants aged 65 years and above. A deficit accumulation frailty index (FI) was constructed using 38 items that assess physical, cognitive, psychological, and social domains. Based on the FI, participants were categorized into non-frail (FI ≤ 0.15), pre-frail (0.15 < FI ≤ 0.25), or frail (FI > 0.25). Serum UA levels were quantified through a colorimetric enzymatic assay. RESULTS: After controlling for confounders such as age, sex, socioeconomic status (including income and education level), lifestyle factors (smoking status), and medical history (hypertension, diabetes, dyslipidemia, stroke, cardiovascular diseases), and body mass index, serum UA levels were observed to be significantly higher in frail participants compared with their non-frail counterparts (P < 0.001). Furthermore, serum UA concentrations demonstrated a positive correlation with the FI (P < 0.001), and the odds ratio for frailty per 1 mg/dL increase in serum UA was 1.22 (P < 0.001). Additionally, older adults in the highest quartile of UA levels exhibited a significantly higher FI and 1.66-fold increased odds of frailty compared with those in the lowest quartile (P = 0.011 and P = 0.005, respectively). CONCLUSIONS: These findings suggest that elevated circulating UA levels may act as a pro-aging factor rather than an anti-aging one in older adults, highlighting its potential role in accelerating biological aging. The data further support the utility of serum UA as a potential blood-based biomarker for frailty in this demographic, contributing to the expanding evidence on its significance in geriatric health assessments.

6.
Diabetes Metab J ; 48(4): 487-502, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39043443

RESUMO

Cardiovascular diseases (CVDs) and metabolic disorders stand as formidable challenges that significantly impact the clinical outcomes and living quality for afflicted individuals. An intricate comprehension of the underlying mechanisms is paramount for the development of efficacious therapeutic strategies. Protein arginine methyltransferases (PRMTs), a class of enzymes responsible for the precise regulation of protein methylation, have ascended to pivotal roles and emerged as crucial regulators within the intrinsic pathophysiology of these diseases. Herein, we review recent advancements in research elucidating on the multifaceted involvements of PRMTs in cardiovascular system and metabolic diseases, contributing significantly to deepen our understanding of the pathogenesis and progression of these maladies. In addition, this review provides a comprehensive analysis to unveil the distinctive roles of PRMTs across diverse cell types implicated in cardiovascular and metabolic disorders, which holds great potential to reveal novel therapeutic interventions targeting PRMTs, thus presenting promising perspectives to effectively address the substantial global burden imposed by CVDs and metabolic disorders.


Assuntos
Doenças Cardiovasculares , Doenças Metabólicas , Proteína-Arginina N-Metiltransferases , Humanos , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Animais , Metilação
7.
BMB Rep ; 57(6): 287-292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523373

RESUMO

Hepatocellular Carcinoma (HCC), the predominant primary hepatic malignancy, is the prime contributor to mortality. Despite the availability of multiple surgical interventions, patient outcomes remain suboptimal. Immunotherapies have emerged as effective strategies for HCC treatment with multiple clinical advantages. However, their curative efficacy is not always satisfactory, limited by the dysfunctional T cell status. Thus, there is a pressing need to discover novel potential biomarkers indicative of T cell exhaustion (Tex) for personalized immunotherapies. One promising target is Cyclin-dependent kinase inhibitor 2 (CDKN2) gene, a key cell cycle regulator with aberrant expression in HCC. However, its specific involvement remains unclear. Herein, we assessed the potential of CDKN2 expression as a promising biomarker for HCC progression, particularly for exhausted T cells. Our transcriptome analysis of CDKN2 in HCC revealed its significant role involving in HCC development. Remarkably, single-cell transcriptomic analysis revealed a notable correlation between CDKN2 expression, particularly CDKN2A, and Tex markers, which was further validated by a human cohort study using human HCC tissue microarray, highlighting CDKN2 expression as a potential biomarker for Tex within the intricate landscape of HCC progression. These findings provide novel perspectives that hold promise for addressing the unmet therapeutic need within HCC treatment. [BMB Reports 2024; 57(6): 287-292].


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Linfócitos T , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linfócitos T/metabolismo , Linfócitos T/imunologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Exaustão das Células T
8.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622198

RESUMO

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Assuntos
Ferro , Lipocalina-2 , Cirrose Hepática , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferro/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA