Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 17: 704, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27589862

RESUMO

BACKGROUND: Felid herpesvirus 1 (FHV-1) causes upper respiratory tract diseases in cats worldwide, including nasal and ocular discharge, conjunctivitis and oral ulceration. The nature and severity of disease can vary between clinical cases. Genetic determinants of virulence are likely to contribute to differences in the in vivo phenotype of FHV-1 isolates, but to date there have been limited studies investigating FHV-1 genetic diversity. This study used next generation sequencing to compare the genomes of contemporary Australian clinical isolates of FHV-1, vaccine isolates and historical clinical isolates, including isolates that predated the introduction of live attenuated vaccines into Australia. Analysis of the genome sequences aimed to assess the level of genetic diversity, identify potential genetic markers that could influence the in vivo phenotype of the isolates and examine the sequences for evidence of recombination. RESULTS: The full genome sequences of 26 isolates of FHV-1 were determined, including two vaccine isolates and 24 clinical isolates that were collected over a period of approximately 40 years. Analysis of the genome sequences revealed a remarkably low level of diversity (0.0-0.01 %) between the isolates. No potential genetic determinants of virulence were identified, but unique single nucleotide polymorphisms (SNPs) in the UL28 and UL44 genes were detected in the vaccine isolates that were not present in the clinical isolates. No evidence of FHV-1 recombination was detected using multiple methods of recombination detection, even though many of the isolates originated from cats housed in a shelter environment where high infective pressures were likely to exist. Evidence of displacement of dominant FHV-1 isolates with other (genetically distinct) FHV-1 isolates over time was observed amongst the isolates obtained from the shelter-housed animals. CONCLUSIONS: The results show that FHV-1 genomes are highly conserved. The lack of recombination detected in the FHV-1 genomes suggests that the risk of attenuated vaccines recombining to generate virulent field viruses is lower than has been suggested for some other herpesviruses. The SNPs detected only in the vaccine isolates offer the potential to develop PCR-based methods of differentiating vaccine and clinical isolates of FHV-1 in order to facilitate future epidemiological studies.


Assuntos
Doenças do Gato/virologia , Variação Genética , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Animais , Gatos , Feminino , Genoma Viral , Genômica/métodos , Herpesviridae/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Polimorfismo Genético , Recombinação Genética
2.
Vet Microbiol ; 177(1-2): 25-31, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801938

RESUMO

Recombination is an important contributor to genomic evolution in many viral families, including the Caliciviridae. While it is known that genomic recombination in caliciviruses contributes to their rapid evolution, the precise molecular mechanisms are poorly understood. The majority of reported recombination events in feline calicivirus (FCV) occur at a "hot spot" between the non-structural protein coding region (open reading frame 1) and structural protein coding region (open reading frame 2). To gain a better understanding of the rate of recombination at this point, we developed a quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay to quantify the rate of recombination between two divergent strains of FCV during co-infection in cell culture. The assay utilised virus-specific primers upstream and downstream of the recombinational "hot spot" that hybridise with only one of the strains in the co-infection. Recombinant progeny that shared ORF1 sequence identity with one parental virus and ORF2 sequence identity with the other parental virus, and the site of recombination, was confirmed by sequencing the amplicon generated by the assay. Recombinants were detected in co-infected cells using this assay, but not in cells infected with single strains that were mixed together following infection, thus confirming its specificity. Recombination between two FCVs in co-infected cell cultures was estimated to occur at a rate of at least 6.8×10(-6) single direction recombinant genomes per parental virus genome. Further application of this assay will enable factors influencing recombination in caliciviruses to be explored in greater detail, both in vitro and in vivo.


Assuntos
Calicivirus Felino/genética , Recombinação Genética , Animais , Sequência de Bases , Gatos , Células Cultivadas , Coinfecção , Primers do DNA/genética , Genoma Viral , Fases de Leitura Aberta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA