Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 237(Pt 2): 117002, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37648194

RESUMO

The primary barrier to nutrient absorption in fish is the intestinal epithelium, followed by a community of microorganisms known as the gut microbiota, which can be thought of as a hidden organ. The gastrointestinal microbiota of fish plays a key role in the upholding of overall health by maintaining the homeostasis and disease resistance of the host. However, emerging contaminants as the result of anthropogenic activities have significantly led to disruptions and intestinal dysbiosis in fish. Which probably results in fish mortalities and disrupts the balance of an ecosystem. Therefore, we comprehensively seek to compile the effects and consequences of emerging contaminations on fish intestinal microbiota. Additionally, the mitigation strategies including prebiotics, probiotics, plant-based diet, and Biofloc technology are being outlined. Biofloc technology (BFT) can treat toxic materials, i.e., nitrogen components, and convert them into a useful product such as proteins and demonstrated promising elevating technique for the fish intestinal bacterial composition. However, it remains unclear whether the bacterial isolate is primarily responsible for the BFT's removal of nitrate and ammonia and the corresponding removal mechanism. To answer this, real time polymerase chain reaction (RT-PCR) with metagenomics, transcriptomics, and proteomics techniques probably provides a possible solution.

2.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373170

RESUMO

This work is related to the environmental toxicology risk assessment and evaluation of the possible transformation of carbon-based nanomaterials (CNMs) after contact with marine microalgae. The materials used in the study represent common and widely applied multi-walled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO). The toxicity was evaluated as growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species generation changes. The measurement was performed with flow cytometry after 3, 24, 96 h, and 7 days. The biotransformation of nanomaterials was evaluated after 7 days of microalgae cultivation with CNMs by FTIR and Raman spectroscopy. The calculated toxic level (EC50 in mg/L, 96 h) of used CNMs reduced in the following order: CNTs (18.98) > GrO (76.77) > Gr (159.40) > C60 (414.0). Oxidative stress and membrane depolarization were the main toxic action of CNTs and GrO. At the same time, Gr and C60 decreased the toxic action with time and had no negative impact on microalgae after 7 days of exposure even at the concentration of 125 mg/L. Moreover, C60 and Gr after 7 days of contact with microalgae cells obtained structural deformations.


Assuntos
Fulerenos , Microalgas , Nanoestruturas , Nanotubos de Carbono , Nanotubos de Carbono/toxicidade , Fulerenos/toxicidade , Nanoestruturas/toxicidade , Biotransformação
3.
Fish Physiol Biochem ; 49(4): 599-612, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306785

RESUMO

The present study aimed to examine individual nutritional and ameliorative effects of silica nanoparticles (SiO2NPs) and natural zeolite nanoparticles (ZeNPs) and their potential role as carriers to alter the bioavailability of curcumin. Common carps (Cyprinus carpio) were fed during 60 days with a control diet, and curcumin, turmeric, SiO2NPs, curcumin-loaded SiO2NPs, ZeNPs, and curcumin-loaded ZeNPs each at 1, 50, 6.15, 7.15, 39, and 40 g/kg diet, respectively. The highest weight gain (WG) and specific growth rate (SGR) were observed in fish fed with turmeric (P < 0.05). Moreover, dietary curcumin and ZeNPs increased the content of monounsaturated fatty acids (P < 0.05). After exposure to silver nanoparticles (AgNPs), the lowest amount of aspartate aminotransferase (AST) was obtained in fish fed with curcumin (P < 0.05). In addition, alanine aminotransferase (ALT) decreased significantly in the negative control, curcumin, and curcumin-loaded SiO2NPs treatments in comparison to the positive control group (P < 0.05). The lowest silver accumulation was observed in the negative control and SiO2NPs groups (P < 0.05). This experiment demonstrated that while the nanoencapsulation of curcumin on SiO2NPs and ZeNPs did not enhanced the impact of curcumin on the growth and biochemical factors of carps, it can still be considered a potential dietary supplement for enhancing growth and antioxidant indices when added individually to the diet.


Assuntos
Carpas , Curcumina , Nanopartículas Metálicas , Zeolitas , Animais , Curcumina/farmacologia , Zeolitas/farmacologia , Ácidos Graxos , Prata/farmacologia , Dieta/veterinária , Suplementos Nutricionais/análise , Antioxidantes , Ração Animal/análise
4.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055175

RESUMO

The investigation of the combined toxic action of different types of nanoparticles (NPs) and their interaction between each other and with aquatic organisms is an important problem of modern ecotoxicology. In this study, we assessed the individual and mixture toxicities of cadmium and zinc sulfides (CdS and ZnS), titanium dioxide (TiO2), and two types of mesoporous silicon dioxide (with no inclusions (SMB3) and with metal inclusions (SMB24)) by a microalga growth inhibition bioassay. The counting and size measurement of microalga cells and NPs were performed by flow cytometry. The biochemical endpoints were measured by a UV-VIS microplate spectrophotometer. The highest toxicity was observed for SMB24 (EC50, 3.6 mg/L) and CdS (EC50, 21.3 mg/L). A combined toxicity bioassay demonstrated that TiO2 and the SMB3 NPs had a synergistic toxic effect in combinations with all the tested samples except SMB24, probably caused by a "Trojan horse effect". Sample SMB24 had antagonistic toxic action with CdS and ZnS, which was probably caused by metal ion scavenging.


Assuntos
Microalgas/crescimento & desenvolvimento , Óxidos/toxicidade , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidade , Compostos de Cádmio/toxicidade , Interações Medicamentosas , Microalgas/efeitos dos fármacos , Nanopartículas , Dióxido de Silício/toxicidade , Titânio/toxicidade , Compostos de Zinco/toxicidade
5.
Environ Res ; 194: 110611, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358875

RESUMO

No to less effort has been made to assess the toxicity of silver nanoparticles (AgNPs) to lipid composition in biological systems and also to discover a mitigating agent against their oxidative stress. Hence, this research evaluated the antioxidant capability of quercetin (Qu) against silver nanoparticles (AgNPs) toxicity towards the lipid contents of ovarian, nervous, and hepatic systems as well as skeletal muscles. To this end, zebrafish (n = 180) were assigned into four experimental dietary groups: negative and positive controls, without Qu supplementation; Qu-200, 200 mg Qu per kg diet; and Qu-400, 400 mg Qu per kg diet. At the end of the feeding trial (40 days), the experimental groups, except the negative control, were exposed to sublethal concentration of AgNPs (0.15 mg L-1) for 96 h. As to the liver tissue of the positive and Qu-200 treatments, total polyunsaturated fatty acids (∑PUFA) decreased 3 times, as well as total high unsaturated fatty acids (∑HUFA) reduced about 30% and 50%, respectively. However, the brain ∑HUFA, predominated by DHA, enhanced in Qu-400 treatment. Interestingly, ∑MUFA, ∑PUFA, and ∑HUFA increased in the muscle of all treated groups, especially Qu-200 and Qu-400. The oocyte ∑MUFA content increased in the positive and Qu-200 treatments, whereas ∑HUFA reduced about 25%, 25%, and 20%, respectively, in the positive, Qu-200, and Qu-400 groups. Generally, the findings suggest that unsaturated acyl chains, particularly HUFAs, in the liver tissue and oocyte cell are highly susceptible to peroxidation or degeneration by AgNPs. More broadly, in the context of ecotoxicological risk assessment, the alteration in HUFAs and PUFAs of the liver and oocyte could impact on maternal and offspring health and consequently alter long-term population dynamics of aquatic animals.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Animais , Encéfalo , Dieta , Suplementos Nutricionais , Ácidos Graxos , Fígado , Nanopartículas Metálicas/toxicidade , Músculos , Oócitos , Quercetina/farmacologia , Prata/toxicidade
6.
Trop Anim Health Prod ; 53(2): 314, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970357

RESUMO

Excessive use of silver nanoparticles (AgNPs) due to antibacterial properties can raise concerns about their release into environment and potential toxicity in aquatic organisms. Melatonin has several physiological functions especially antioxidant potential against oxidative stress. The current study was conducted to investigate the potential effects of two doses of dietary melatonin on growth performance, plasma biochemistry, and liver enzyme activity in Nile tilapia (Oreochromis niloticus) juveniles. We also investigated the potential ameliorative effect of melatonin in AgNPs-induced biochemical alterations in tilapia fish. The results showed that melatonin-supplemented diets had no significant effect on growth performance of fish (P>0.05). The liver GPx activity increased in fish fed melatonin-supplemented diets (P<0.05), but the SOD activity showed no significant difference in comparison with the control (P>0.05). The administration of melatonin-supplemented diets reduced the activity of liver MDA compared to the control (P<0.05). Feeding fish with high melatonin-supplemented diet (200 mg kg-1 of diet) decreased the plasma glucose, total protein, and AST levels (P<0.05). The liver GPx and SOD activities were higher in high melatonin-treated fish exposed to AgNPs than the control group (P<0.05). Dietary melatonin decreased the liver MDA activity in AgNPs-exposed fish. The plasma glucose, AST, and ALT levels in melatonin-treated fish exposed to AgNPs decreased compared to the untreated exposed fish (P<0.05). Melatonin-treated fish exposed to 0.05 and 0.5 mg L-1 of AgNPs had lower plasma LDH level than the control group (P<0.05). The results showed that consumption of melatonin-supplemented diets could modulate some of the biochemical indices of plasma and liver in Nile tilapia. The findings also indicated the ameliorative effect of dietary melatonin on AgNPs-induced toxicity in Nile tilapia.


Assuntos
Ciclídeos , Melatonina , Nanopartículas Metálicas , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Melatonina/farmacologia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Prata/toxicidade
7.
Environ Monit Assess ; 192(6): 330, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32372388

RESUMO

The present study investigated the acute (72 h) and sub-acute (14 days) toxicity of mercury, lead, and cadmium to the green microalga, Nannochloropsis oculata. The acute toxicity testing was conducted according to the modified OECD guideline (No. 201). The 72-h IC50 values of Hg, Pb, and Cd exposed to N. oculata were 0.87, 1.81, and 4.97 mg/L, respectively. These results showed that mercury is about twice as toxic as lead and about 5.7 times more toxic than cadmium to this marine microalga. Lead is about 2.7 times more toxic than cadmium. The chlorophyll a content of the microalga decreased in the 10th and 14th days of the sub-acute toxicity test. Although the carotenoid content increased following exposure to the low levels of tested heavy metals (which may show the protective role of carotenoids against oxidative stress), with increased exposure time the total carotenoid reduced compared to control. A regular monitoring program to examine the level of metals in the aquatic ecosystem for protecting microalgae should be implemented.


Assuntos
Clorofila A , Monitoramento Ambiental , Metais Pesados , Microalgas , Poluentes Químicos da Água , Cádmio/toxicidade , Clorofila A/metabolismo , Ecossistema , Exposição Ambiental , Chumbo/toxicidade , Mercúrio/toxicidade , Metais Pesados/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
8.
Fish Physiol Biochem ; 45(2): 793-804, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30392099

RESUMO

The aim of this study was to investigate the effects of dietary selenium (nanoparticles, organic, and inorganic forms), curcumin (CUR), and their combination on survival, growth performance, body composition, innate immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss). CUR at level of 400 mg/kg dry diet and each of selenium nanoparticles (Se-NPs), organic selenium (Sel-Plax®), and sodium selenite at level of 1 mg/kg Se dry diet were added to basal diet. A total of 240 rainbow trout with mean initial weight of 14.65 ± 0.86 g were fed eight diets including control (basal diet), CUR, Se-NPs, Se-NPs + CUR, organic Se, organic Se + CUR, sodium Se, and sodium Se + CUR for 8 weeks. No significant increase in survival rate, growth performance, feed utilization, and body composition was observed in fish-fed CUR and Se included diets compared to control (P > 0.05). The highest lysozyme and alternative hemolytic complement activity was observed in fish-fed CUR and organic Se + CUR-supplemented diets (P < 0.05). Fish-fed Se-NPs and Se-NPs + CUR-supplemented diets had the highest glutathione peroxidase activity (P < 0.05). The results of the present study indicated that the combination of CUR and Se in nanoparticles and organic forms was more effective in promoting innate immune responses of rainbow trout compared to the other combined or separated Se and CUR forms.


Assuntos
Composição Corporal/efeitos dos fármacos , Curcumina/farmacologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Selênio/química , Selênio/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Glutationa Peroxidase/metabolismo , Microscopia Eletrônica de Varredura , Nanopartículas/química , Oncorhynchus mykiss/metabolismo , Distribuição Aleatória
9.
Toxicol Mech Methods ; 29(2): 95-109, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30113242

RESUMO

This paper introduces a new standardized testing procedure for nanomaterial environmental toxicity (International Organization for Standardization/Technical Specification (ISO/TS) 20787): 'aquatic toxicity assessment of manufactured nanomaterials in saltwater lakes using Artemia sp. Nauplii' intended to generate more reliable and repeatable aquatic toxicity data testing manufactured nanomaterials, using Artemia sp., to evaluate their possible ecotoxicity in saltwater lake ecosystems. The principles behind testing with Artemia sp. are reviewed and the paper gives an overview of research published between 2009 and 2018 in which manufactured nanomaterials were tested using Artemia sp.


Assuntos
Artemia/efeitos dos fármacos , Monitoramento Ambiental/métodos , Lagos/química , Manufaturas/toxicidade , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental/normas , Reprodutibilidade dos Testes , Medição de Risco , Salinidade , Testes de Toxicidade/normas
10.
Fish Physiol Biochem ; 44(4): 1087-1097, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29663181

RESUMO

An 8-week feeding trial was conducted to compare the effects of supplementing (0.7 mg kg-1) different dietary selenium (Se) sources including organic [selenomethionine (SeMet)], inorganic [sodium selenite (Na2SeO3)], and nanoparticulate Se (nano-Se) on physiological responses of common carp, Cyprinus carpio juveniles (9.7 ± 0.1 g). Basal diet without Se supplementation used as control. Fish fed nano-Se supplemented diet had the highest weight gain (97.2 ± 10.8%) and feed efficiency ratio (42.4 ± 0.8%). Intestinal villi height was significantly taller in fish fed nano-Se diet than in the control group in both foregut and midgut sections. Serum glutathione peroxidase and superoxide dismutase activities were significantly higher in nano-Se and SeMet groups than in control and sodium selenite groups. Fish fed Se-supplemented diets had greater red blood cell counts and hematocrit and hemoglobin values than the control group (P < 0.05). Nano-Se and SeMet groups showed a significant increase in white blood cell counts, neutrophil percentage, and serum lysozyme activity than the other groups. Fish fed nano-Se diet had the highest serum hemolytic activity, total immunoglobulin, and total protein and albumin contents, as well as the lowest serum total cholesterol and low density lipoprotein levels (P < 0.05). Overall, significant improvements in growth performance, feed utilization, intestinal morphology, and hemato-immunological and serum biochemical parameters of common carp juveniles suggest nano-Se as an efficient source for providing dietary Se in this species.


Assuntos
Biomarcadores/análise , Carpas/sangue , Carpas/crescimento & desenvolvimento , Dieta/veterinária , Selênio/administração & dosagem , Ração Animal/análise , Animais , Carpas/fisiologia , Suplementos Nutricionais , Hematócrito/veterinária , Hemólise/efeitos dos fármacos , Imunoglobulinas/metabolismo , Nanopartículas/administração & dosagem , Selenometionina/administração & dosagem , Selenito de Sódio/administração & dosagem
11.
Fish Physiol Biochem ; 43(2): 579-589, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27848040

RESUMO

Two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry, and database searching were used to analyze the effects of triploidization heat shock treatment on protein expression in rainbow trout eyed embryo and fry. After fertilization, the eggs were incubated at 10 °C for 10 min. Half of the eggs were then subjected to heat shock for 10 min submerged in a 28 °C water bath to induce triploidy. The remainder was incubated normally and used as diploid controls. Specimens of eyed embryos and fry were taken on 18 and 76 days post-fertilization, respectively. In the eyed embryo extracts, seven protein spots were significantly changed in abundance between the control and heat-shocked groups and one of these was decreased while the others were increased in the heat shock-treated group. Of the spots that were shown to change in abundance in the eyed embryos with heat shock treatment, two were identified as vitellogenin, while the others were creatine kinase and angiotensin I. In the 2-DE from the fry muscle extraction, 23 spots were significantly changed in abundance between the diploid and triploid groups. Nineteen of these showed a decreased abundance in diploids, while the remaining four spots had an increased abundance. Triploidization caused differential expression of muscle metabolic proteins including triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and beta-enolase. Myosin heavy chain as a structural protein was also found to change in abundance in triploids. The altered expression of both structural and metabolic proteins in triploids was consistent with their increased cell size and lower growth performance.


Assuntos
Proteínas de Peixes/metabolismo , Oncorhynchus mykiss , Proteoma , Triploidia , Animais , Eletroforese em Gel Bidimensional , Oncorhynchus mykiss/embriologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo
12.
Arch Environ Contam Toxicol ; 71(4): 541-552, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27638716

RESUMO

Metal oxide nanoparticles (NPs), such as TiO2 and CuO, are widely applied in an increasing number of products and applications, and therefore their release to the aquatic ecosystems is unavoidable. However, little is known about joint toxicity of different NPs on tissues of aquatic organisms, such as fish. This study was conducted to assess the uptake and depuration of Cu following exposure to CuO NPs in the presence of TiO2 NPs in the liver, intestine, muscle, and gill of common carp, Cyprinus carpio. Carps with a mean total length of 23 ± 1.5 cm and mean weight of 13 ± 1.3 g were divided into 6 groups of 15 each (1 control group) and exposed to TiO2 NPs, CuO NPs, and a mixture of TiO2 and CuO NPs for periods of 20 days for uptake and 10 days for depuration. The determination of total Cu concentration was carried out by an ICP-OES. The order of Cu uptake in different tissues of the carps was liver > gill > muscle > intestine in both levels of CuO NPs alone; results showed that the total Cu concentrations in the presence of TiO2 nanoparticles were increased and were in the sequence of liver > gill > intestine > muscle. In depuration period, Cu concentrations were decreased in all treatments in the sequence of gill > intestine > muscle > liver. Uptake of Cu in different tissues of common carp increased with increasing concentration and time and was tissues- and time-dependent. In conclusion, this study suggested that the uptake of Cu in the tissues of common carp increased in the joint presence of TiO2 NPs.


Assuntos
Carpas/metabolismo , Cobre/metabolismo , Nanopartículas/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/metabolismo , Animais , Cobre/toxicidade , Testes de Toxicidade
13.
Environ Monit Assess ; 188(10): 575, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27650436

RESUMO

The aim of this research was to investigate the coexposure of nanoparticles of titanium dioxide (TiO2) and copper oxide (CuO) on the alterations of the gill, intestine, kidney, and liver tissues of carps (Cyprinus carpio). In this study, carps (length 23 ± 1.5 cm; weight 13 ± 1.3 g) were divided into six groups of 15 each and exposed to 2.5 and 5.0 mg L(-1) of CuO nanoparticles (NPs), 10.0 mg L(-1) of TiO2 NPs, and 2.5 and 5.0 mg L(-1) of CuO NPs + 10.0 mg L(-1) of TiO2 NP mixture. Fish were sampled for histopathological studies after hematoxylin-eosin staining. Results indicated that the more kinds of histopathology anomalies observed with CuO NP and TiO2 NP mixture were broadly of the same type as CuO NPs and TiO2 NPs alone, but the severity or incidence of injuries of gill, intestine, liver, and kidney of carps in the mixture of CuO NPs + TiO2 NPs was higher than that of each NP alone. Moreover, behavioral changes in carps exposed to CuO NP and TiO2 NP mixture such as hyperactivity, loss of balance, and convulsions were higher than those to CuO NPs and TiO2 NPs alone. In conclusion, the presence of TiO2 NPs enhanced the effects of NPs of copper oxide in terms of histopathological changes in carps.


Assuntos
Carpas , Cobre/toxicidade , Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Sinergismo Farmacológico , Brânquias/efeitos dos fármacos , Brânquias/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia
14.
Environ Sci Pollut Res Int ; 31(13): 19206-19225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355858

RESUMO

Toxicological effects of silver nanoparticles (SNPs) in different organisms have been studied; however, interactions of SNPs with other environmental pollutants such as mercury are poorly understood. Herein, bioassay tests were performed according to ΟECD 201 guideline to assess the toxic effects induced by mercury ions (mercury chloride, MCl) on the marine microalga Chaetoceros muelleri in the presence of SNPs or silver ions (silver nitrate, SN). Acute toxicity tests displayed that the presence of SNPs or SN (0.01 mg L-1) significantly reduced the toxicity of MCl (0.001, 0.01, 0.1, 1, 10, and 100 mg L-1) and increased the IC50 of MCl from 0.072 ± 0.014 to 0.381 ± 0.029 and 0.676 ± 0.034 mg L-1, respectively. In the presence of SN or SNPs, the mercury-reducing effect on algal population growth significantly decreased. Considering the increase of IC50, the mercury toxicity decreased approximately 5.44 and 9.66 times in the presence of SNPs or SN, respectively. The chlorophyll a and c contents decreased at all exposures; however, the decrease by MCl-SNPs and MCl-SN was significantly less than MCl except at 1 mg L-1. The lowering effect of MCl-SN on chlorophyll contents was less than MCl and MCl-SNPs. MCl exposure induced significant raises in total protein content (TPC) at concentrations < 0.01mg  L-1, with a maximum of ~ 70.83% attained at 100 mg L-1. The effects of MCl-SNPs and MCl-SN on TPC were significantly less than MCl. Total lipid content (TLC) at all MCl concentrations was higher than the control, while at coexposure to MCl-SN, TLC did not change until 0.01 mg L-1 compared with the control. The effects of MCl-SN and MCL-SNPs on TPC and TLC were in line with toxicity results, and were significantly less than those of MCl individually, confirming their antagonistic effects on MCl. The morphological changes of algal cells and mercury content of the cell wall at MCl-SN and MCl-SNPs were mitigated compared with MCl exposure. These findings highlight the mitigatory impacts of silver species on mercury toxicity, emphasizing the need for better realizing the mixture toxicity effects of pollutants in the water ecosystem.


Assuntos
Poluentes Ambientais , Mercúrio , Nanopartículas Metálicas , Microalgas , Poluentes Químicos da Água , Mercúrio/toxicidade , Clorofila A/metabolismo , Microalgas/metabolismo , Nanopartículas Metálicas/toxicidade , Ecossistema , Prata/toxicidade , Poluentes Ambientais/toxicidade , Íons , Poluentes Químicos da Água/toxicidade
15.
Plant Physiol Biochem ; 214: 108949, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39053316

RESUMO

Even though microplastics (MPs) and graphene nanomaterials (GNMs) have demonstrated individual toxicity towards aquatic organisms, the knowledge gap lies in the lack of understanding regarding their combined toxicity. The difference between the combined toxicity of MPs and GNMs, in contrast to their individual toxicities, and furthermore, the elucidation of the mechanism of this combined toxicity are scientific questions that remain to be addressed. In this study, we examined the individual and combined toxicity of three polystyrene microplastics (MPs) with different functional groups-unmodified, carboxyl-modified (COOH-), and amino-modified (NH2-) MPs-in combination with reduced graphene oxide (RGO) on the freshwater microalga Scenedesmus obliquus. More importantly, we explored the cellular and molecular mechanisms responsible for the observed toxicity. The results indicated that the growth inhibition toxicity of RGO, either alone or in combination with the three MPs, against S. obliquus increased gradually with higher particle concentrations. The mitigating effect of MPs-NH2 on RGO-induced toxicity was most significant at a higher concentration, surpassing the effect of unmodified MPs. However, the MPs-COOH did not exhibit a substantial impact on the toxicity of RGO. Unmodified MPs and MPs-COOH aggravated the inhibition effects of RGO on the cell membrane integrity and oxidative stress-related biomarkers. Additionally, MPs-COOH exhibited a stronger inhibition effect on RGO-induced biomarkers compared to unmodified MPs. In contrast, the MPs-NH2 alleviated the inhibition effect of RGO on the biomarkers. Furthermore, the presence of differently functionalized MPs did not significantly affect RGO-induced oxidative stress and photosynthesis-related gene expression in S. obliquus, indicating a limited ability to modulate RGO genotoxicity at the molecular level. These findings can offer a more accurate understanding of the combined risks posed by these micro- and nano-materials and assist in designing more effective mitigation strategies.

16.
Environ Sci Pollut Res Int ; 31(3): 4025-4035, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093077

RESUMO

Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) are metal-organic frameworks (MOFs) that have gained significant attention in various fields due to their unique properties. They have potential applications in drug delivery, gas storage, and catalysis. However, their increasing use raises concerns about their potential environmental impact. Our study evaluates the effects of ≈90 nm ZIF-8 NPs in two planktonic species, the green microalga Nannochloropsis oculata and the brine shrimp Artemia salina. After synthesis and characterization (SEM, EDS, BET, and DLS) of nanoporous ZIF-8 NPs, a growth inhibition test on microalgae (72 h) and acute immobilization test on instar I and II of Artemia nauplii (48 h) were conducted following, OECD 201 and ISO/TS 20787, respectively. The toxicity of ZIF-8 NPs to both species was time- and concentration-dependent. The 72-h median inhibitory concentration (IC50) of ZIF-8 NPs for N. oculata based on average specific growth rate and yield were calculated as 79.71 ± 8.55 mg L-1 and 51.73 ± 5.16 mg L-1, respectively. Also, the 48-h median effective concentration (EC50) of ZIF-8 NPs on immobilization rate of instar I and II were calculated as 175.09 ± 4.14 mg L-1 and 4.69 ± 0.34 mg L-1, respectively. Moreover, the swimming type of non-immobilized animals was affected by ZIF-8 NPs. These findings provide a good insight into the toxicity of nanoparticulate ZIF-8 to saltwater planktons and also confirm that instar II Artemia is more sensitive than instar I. This study demonstrated that ZIF-8 NPs, despite all their advantages, could have toxic effects on aquatic organisms. More studies are required to assess their potential environmental impact and develop strategies to mitigate their toxicity.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Zeolitas , Animais , Artemia , Plâncton , Zeolitas/farmacologia , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade
17.
Environ Pollut ; 342: 123141, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097159

RESUMO

The present research assessed, for the first time, toxicity of ZIF-8 (1 mg/L) and the building blocks (0.1 mg/L Zn2+ and 0.4 mg/L 2-methylimidazole (2-MIm)), besides that of AgNPs@ZIF-8 (0.25, 0.5, and 1 mg/L) and AgNO3 (0.1 mg/L) to aquatic organisms. Two consecutive generations (F0 & F1) of Artemia salina were exposed to these chemicals. All of the chemical treatments considerably caused mortality in F0, especially AgNPs@ZIF-8 and AgNO3, whereas F1 displayed notable tolerance and survived comparable to the control group, except in the case of AgNO3 treatment. Similarly, growth indices (weight, mainly in ZIF-8, Zn2+, and 2-MIm; length, in Ag-doped ZIF-8 and AgNO3) were significantly retarded in F0 and especially F1 of all treatments, and 2-MIm caused the greatest length retardation in F0. AgNPs@ZIF-8 (0.5 and 1 mg/L), 2-MIm, and AgNO3 postponed the ovary emergence in about 40%-60% of the exposed F0, and ZIF-8 delayed this phenomenon in some individuals of F0 and F1 up to 6 days. This temporal disturbance was also observed in time to first brood of almost all experimental F0 and F1 groups, with being over 80% of F1 exposed to ZIF-8, 2-MIm, and Zn2+, as well as about 50% of F0 treated with 2-MIm, and Zn2+. The highest neonate number was recorded for F0 and F1 exposed to AgNO3 and Zn2+, while ZIF-8 and, importantly, 2-MIm decreased the reproductivity to the lowest levels in both generations. Generally, the reproductive frequency was significantly decreased in all F0 and F1 treatments, especially 2-MIm, ZIF-8, AgNPs@ZIF-8 (0.25 & 1 mg/L). This study highlighted the neglected importance of 2-MIm in assessing overall toxicity of ZIF-8, and even other organic ligands of MOFs, and also filled a gap in the literature by investigating the potential effect of additives such as AgNPs on the toxicity of ZIF-8 and other MOFs.


Assuntos
Artemia , Nanopartículas , Humanos , Animais , Feminino , Recém-Nascido , Reprodução
18.
Environ Sci Pollut Res Int ; 30(26): 68655-68666, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126163

RESUMO

Increasing production and use of engineered nanoparticles (NPs) leads to their release into the aquatic environments where they can interact with other hazardous contaminants, such as heavy metals, and threaten aquatic organisms. This study considers the ecotoxicity of arsenic (III) and silica nanoparticles (nSiO2), individually and simultaneously, to the zebrafish (Danio rerio) using response surface methodology (RSM) under central composite design (CCD). The results revealed that in the treatments within the concentration range of 1 to 5 mg L-1 arsenic and 1-100 mg L-1 nSiO2, no mortality was observed after 96 h. The optimal conditions for achieving the lowest effect of simultaneous toxicity in the concentration range of nSiO2 and arsenic were 100 and 7 mg L-1, respectively. Accordingly, the desirable function of the predicted model was found to be 0.78. According to these results, arsenic is toxic for zebrafish. Importantly, exposure to nSiO2 alone did not cause acute toxicity in the studied species, while arsenic toxicity decreased by increasing the concentration of nSiO2.


Assuntos
Arsênio , Nanopartículas , Animais , Arsênio/toxicidade , Peixe-Zebra , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Organismos Aquáticos
19.
Toxics ; 11(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37368591

RESUMO

The growing production and application of carbon-based nanomaterials (CNMs) represent possible risks for aquatic systems. However, the variety of CNMs with different physical and chemical properties and different morphology complicate the understanding of their potential toxicity. This paper aims to evaluate and compare the toxic impact of the four most common CNMs, namely multiwalled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO) on the marine microalgae Porphyridium purpureum. The microalgae cells were exposed to the CNMs for 96 h and measured by flow cytometry. Based on the obtained results, we determined no observed effect level (NOEL), and calculated EC10 and EC50 concentrations for growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species (ROS) generation changes for each tested CNM. According to the sensitivity (growth rate inhibition) of P. purpureum, the used CNMs can be listed in the following order (EC50 in mg/L, 96 h): CNTs (2.08) > GrO (23.37) > Gr (94.88) > C60 (>131.0). The toxicity of CNTs was significantly higher than the toxic effect of the other used CNMs, and only this sample caused an increase in ROS generation in microalgae cells. This effect was apparently caused by the high affinity between particles and microalgae associated with the presence of exopolysaccharide coverage on P. purpureum cells.

20.
Chemosphere ; 343: 140272, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758071

RESUMO

This study is addressing the potential toxicity concerns of crude oil in common carp (Cyprinus carpio) with the novel use of TiO2-NP for enhancing photocatalytic degradation of WSF of crude oil prepared under UV light or darkness. Blood samples were taken, and the biochemical parameters were analyzed. The levels of ALT, AST and ALP were significantly higher in fish exposed to UV-treated WSF. However, they were significantly lower in the groups exposed to UV-treated TiO2-NPs and the combination of WSF and TiO2-NPs. The levels of total protein, triglycerides, albumin and cholesterol were significantly lower in treatments exposed to UV-treated and dark-conditioned WSF compared to the control group, but they were significantly higher in fish exposed to UV-treated TiO2-NPs and the combination of WSF and TiO2-NPs compared to fish exposed under dark conditions and were not significantly different from the control group. The toxicity of UV-treated WSF was significantly higher than that of dark-conditioned WSF. The toxicity of TiO2-NPs was lower in the presence of UV and was similar to the control treatment. The results of the study suggests that photocatalytic TiO2-NPs and UV radiation reduce toxicity of the water-soluble fraction of crude oil on common carp.


Assuntos
Carpas , Nanopartículas , Petróleo , Animais , Água , Petróleo/toxicidade , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA